Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
In this chapter, you will learn: To describe the benefits of a virtual memory system; to explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames; to discuss the principle of the working-set model; to examine the relationship between shared memory and memory-mapped files; to explore how kernel memory is managed. | Chapter 9: Virtual Memory Operating System Concepts – 9th Edition Silberschatz, Galvin and Gagne ©2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations Operating-System Examples Operating System Concepts – 9th Edition 9.2 Silberschatz, Galvin and Gagne ©2013 Objectives To describe the benefits of a virtual memory system To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames To discuss the principle of the working-set model To examine the relationship between shared memory and memory-mapped files To explore how kernel memory is managed Operating System Concepts – 9th Edition 9.3 Silberschatz, Galvin and Gagne ©2013 Background Code needs to be in memory to execute, but entire program rarely used Error code, unusual routines, large data structures Entire program code not needed at same time Consider ability to execute partially-loaded program Program no longer constrained by limits of physical memory Each program takes less memory while running -> more programs run at the same time Increased CPU utilization and throughput with no increase in response time or turnaround time Less I/O needed to load or swap programs into memory -> each user program runs faster Operating System Concepts – 9th Edition 9.4 Silberschatz, Galvin and Gagne ©2013 Background (Cont.) Virtual memory – separation of user logical memory from physical memory Only part of the program needs to be in memory for execution Logical address space can therefore be much larger than physical address space Allows address spaces to be shared by several processes Allows for more efficient process creation More programs running concurrently Less I/O needed to load or swap processes Operating System Concepts – 9th .