Đang chuẩn bị liên kết để tải về tài liệu:
Lecture Financial modeling - Topic 6: Computing portfolio value-at-risk (VaR), random walk simulations, macros and @Risk simulations

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

In this chapter student will understand how VaR measures the risk of a portfolio; compute static portfolio VaR using formulas and normal distribution functions, a Monte Carlo simulation of a random walk model of asset returns, and @Risk; write VBA Macros using “For Loops” and the “Cells” objects. | Financial Modeling Topic #6: Computing Portfolio Value-At-Risk (VaR), Random Walk Simulations, Macros and @Risk Simulations L. Gattis 1 2 References Financial Modeling 3rd Edition by Simon Benninga Ch. 15: Value at Risk Ch. 22: Monte Carlo simulation Ch. 29: Generating Random Numbers Learning Objectives Understand how VaR measures the risk of a portfolio Compute static portfolio VaR using Formulas and normal distribution functions, A Monte Carlo simulation of a random walk model of asset returns, and @Risk Write VBA Macros using “For Loops” and the “Cells” objects 3 Value at Risk (VaR) VaR is the most you should expect to lose with a given confidence interval and time period. E.g. if the 95% confidence interval, 1-Year, VaR = $10,000. 95% confident that losses will not exceed $10,000 5% probability of losing $10,000 or more One-tailed test statistic 4 $10,000 Loss 95% 5% 5 Analytical VaR If portfolio returns are normally distributed with expected return “µ” and standard deviation “σ”, then the X% Confidence Interval VaR for a portfolio value of V$ is: Where Zx is derived from the normal distribution function X=90% Tail=10% Z90%=1.28 VaR(1Yr, 90%)=V(μ-1.28σ) VaR(1Yr, 95%)=V(μ-1.65σ) VaR(1Yr, 99%)=V(μ-2.33σ) X=95% Tail=5% Z95%=1.65 X=99% Tail=1% Z99%=2.33 Data 6 Analytical VaR 7 VaR=-v*((ua/252)*t-z*(sa/252^0.5)*t^0.5) Simulated VaR and GBM To estimate the risk of a portfolio over multiple periods with contributions you must simulate periodic asset price movements A standard model for simulating asset prices is Geometric Brownian Motion (GBM)-- also called the Random Walk Model The GBM model has two components (1) Drift: the likely price appreciation of the asset (r-d) Expected Total Return – Dividend Yield If assume d=0, it is assumed that dividend are reinvested (2) Noise: Random shocks which are assumed to be normally distributed 8 GBM model of asset values Assuming returns are normally distributed with annual mean (μ) and standard deviation (σ), the simulated . | Financial Modeling Topic #6: Computing Portfolio Value-At-Risk (VaR), Random Walk Simulations, Macros and @Risk Simulations L. Gattis 1 2 References Financial Modeling 3rd Edition by Simon Benninga Ch. 15: Value at Risk Ch. 22: Monte Carlo simulation Ch. 29: Generating Random Numbers Learning Objectives Understand how VaR measures the risk of a portfolio Compute static portfolio VaR using Formulas and normal distribution functions, A Monte Carlo simulation of a random walk model of asset returns, and @Risk Write VBA Macros using “For Loops” and the “Cells” objects 3 Value at Risk (VaR) VaR is the most you should expect to lose with a given confidence interval and time period. E.g. if the 95% confidence interval, 1-Year, VaR = $10,000. 95% confident that losses will not exceed $10,000 5% probability of losing $10,000 or more One-tailed test statistic 4 $10,000 Loss 95% 5% 5 Analytical VaR If portfolio returns are normally distributed with expected return “µ” and standard deviation “σ”,

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.