Đang chuẩn bị liên kết để tải về tài liệu:
Some characterizations of right c-regularity and (b, c)-inverse

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Let R be a ring and a, b, c ∈ R. We give a novel characterization of group inverses (resp. EP elements) by the properties of right (resp. left ) c -regular inverses of a and discuss the relation among the strongly left (b, c)-invertibility of a, the right ca-regularity of b , and the (b, c)-invertibility of a. | Turk J Math (2018) 42: 3078 – 3089 © TÜBİTAK doi:10.3906/mat-1804-32 Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Some characterizations of right c-regularity and (b, c)-inverse Ruju ZHAO∗,, Hua YAO,, Long WANG, Junchao WEI, School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu, P.R. China Received: 09.04.2018 • Accepted/Published Online: 03.10.2018 • Final Version: 27.11.2018 Abstract: Let R be a ring and a, b, c ∈ R . We give a novel characterization of group inverses (resp. EP elements) by the properties of right (resp. left ) c -regular inverses of a and discuss the relation among the strongly left (b, c) -invertibility of a , the right ca -regularity of b , and the (b, c) -invertibility of a . Finally, we investigate the sufficient and necessary condition for a ring to be a strongly left min-Abel ring by means of the (b, c) -inverse of a . Key words: Right c -regular element, (b, c) -inverse, group inverse, EP element, left min-Abel ring 1. Introduction Let S be a semigroup and a, b, c ∈ S . Then a is said to be (b, c) -invertible [4] if there exists y ∈ bSy ∩ ySc such that yab = b and cay = c. Such an y is called a (b, c) -inverse of a, which is always unique if it exists, denoted by a||(b,c) . In [5], Drazin considered the following problem: in any semigroup S (or any associative ring ) with unit element 1, and for any given a ∈ S , the properties 1 ∈ Sa (1 ∈ aS ) of left (right) invertibility are often useful as weaker versions of ordinary two-sided invertibility, and it is natural to seek corresponding one-sided versions for at least some types of generalized invertibility. Hence, Drazin in [5] introduced the left (b, c)-inverse as follows: let S be any semigroup and let a, b, c ∈ S . Then a is said to be left (b, c) -invertible if b ∈ Scab , or equivalently if there exists x ∈ Sc such that xab = b, in which case any such x will be called a left (b, c) -inverse of a. The left (b, c) .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.