Đang chuẩn bị liên kết để tải về tài liệu:
Derivations, generalized derivations and derivations of period 2 in rings

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

The aim of this article is to discuss the existence of certain kinds of derivations and -derivations that are of period 2. Moreover, we obtain the form of generalized reverse derivations and generalized left derivations of period 2. | Turk J Math (2018) 42: 2664 – 2671 © TÜBİTAK doi:10.3906/mat-1805-111 Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Derivations, generalized derivations, and *-derivations of period 2 in rings Hesham NABIEL∗, Department of Mathematics, Faculty of Science Al-Azhar University, Nasr City, Cairo, Egypt Received: 22.05.2018 • Accepted/Published Online: 06.08.2018 • Final Version: 27.09.2018 Abstract: The aim of this article is to discuss the existence of certain kinds of derivations and *-derivations that are of period 2. Moreover, we obtain the form of generalized reverse derivations and generalized left derivations of period 2 . Key words: Maps of period 2, derivations, generalized derivations, *-derivations, prime rings, semiprime rings 1. Introduction Throughout this paper, R will represent an associative ring with center Z(R) . An ideal U of R is said to be central ideal if U ⊆ Z(R) . Given an integer n ≥ 2, a ring R is said to be n -torsion free if for x ∈ R , nx = 0 implies x = 0 . For x, y ∈ R , the symbol [x, y] stands for the commutator xy − yx . R is said to be domain if for a, b ∈ R , ab = 0 implies a = 0 or b = 0 . A domain with identity is called a unital domain. R is said to be prime if for a, b ∈ R , aRb = {0} implies a = 0 or b = 0 , and is said to be semiprime if for a ∈ R , aRa = {0} implies a = 0 . Its clear that every domain is prime. An additive mapping d : R → R is called a derivation (Jordan derivation, respectively) if d(xy) = d(x)y + xd(y) for all x, y ∈ R ( d(x2 ) = d(x)x + xd(x) for all x ∈ R , respectively). As in [9] by Bell and Daif and in [14] by Gölbaşi and Kaya, a right (left, respectively) generalized derivation F of R is an additive map of R associated with a derivation d of R such that F (xy) = F (x)y + xd(y) for all x, y ∈ R ( F (xy) = xF (y) + d(x)y for all x, y ∈ R , respectively). If F is both a right and left generalized derivation with the same associated derivation, then F is .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.