Đang chuẩn bị liên kết để tải về tài liệu:
Formal residue and computer-assisted proofs of combinatorial identities

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Many combinatorial numbers can be represented by the formal residues of hypergeometric terms. With these representations and the extended Zeilberger algorithm, we generate recurrence relations for summations involving combinatorial sequences such as Stirling numbers and their q -analog. As examples, we give computer proofs of several known identities and derive some new identities. The applicability of this method is also studied. | Turk J Math (2018) 42: 2466 – 2480 © TÜBİTAK doi:10.3906/mat-1804-42 Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Formal residue and computer-assisted proofs of combinatorial identities Hai-Tao JIN∗, School of Science, Tianjin University of Technology and Education, Tianjin, P.R. China Received: 13.04.2018 • Accepted/Published Online: 13.07.2018 • Final Version: 27.09.2018 Abstract: The coefficient of x−1 of a formal Laurent series f (x) is called the formal residue of f (x) . Many combinatorial numbers can be represented by the formal residues of hypergeometric terms. With these representations and the extended Zeilberger algorithm, we generate recurrence relations for summations involving combinatorial sequences such as Stirling numbers and their q -analog. As examples, we give computer proofs of several known identities and derive some new identities. The applicability of this method is also studied. Key words: Formal residue, extended Zeilberger algorithm, Stirling number 1. Introduction Finding recurrence relations for summations is a key step in computer proofs of combinatorial identities. In the 1990s, Wilf and Zeilberger [20, 21] developed the method of creative telescoping to generate recurrence relations for hypergeometric summations. Since then, many extensions and new algorithms have been discovered and designed for various kinds of summations. See, for example, [3, 5] for holonomic sequences, [1, 19] for multivariable hypergeometric terms, [17] for nested sums and products, [11, 12] for Stirling-like numbers, and [4, 13, 14] for nonholonomic sequences. Our approach is motivated by the work of Chen and Sun [2]. By using the Cauchy contour integral representations, they transformed sums involving Bernoulli numbers into hypergeometric summations. Then the recurrence relations for the sums can be derived by the extended Zeilberger algorithm [1]. In the present paper, we combine the formal residue operator .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.