Đang chuẩn bị liên kết để tải về tài liệu:
Ebook Theory and problems of fourier analysis with applications to boundary value problems: Part 2

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

(BQ) Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. | chapter 5 Fourier Integrals and Applications THE NEED FOR FOURIER INTEGRALS In Chapter 2 we considered the theory and applications involving the expansion of a function f x of period 2L into a Fourier series. One question which arises quite naturally is what happens in the case where L - 00 We shall find that in such case the Fourier series becomes a Fourier integral. We shall discuss Fourier integrals and their applications in this chapter. THE FOURIER INTEGRAL Let us assume the following conditions on f x 1. f x and f x are piecewise continuous in every finite interval. 2. I dx converges i.e. f x is absolutely integrable in 00 oo . z 00 Then Fourier s integral theorem states that A a cos aX B a sin ax da 0 1 r A a 3 I f x cos aX dx 7T 00 where If . B a - I f x sin ax dx 7T -00 Ơ 2 The result 1 holds if a is a point of continuity of fix . If a is a point of discontinuity .________. f x 0 f x - 0 ________. ______. x . we must replace f x by -------- -------- as in the case of Fourier series. Note that the above conditions are sufficient but not necessary. The similarity of 1 and 2 with corresponding results for Fourier series is apparent. The right-hand side of 1 is sometimes called a Fourier integral expansion of f x . EQUIVALENT FORMS OF FOURIER S INTEGRAL THEOREM Fourier s integral theorem can also be written in the forms f eiax da du ẩ 4 0 eia z- du da 80 CHAP. 5 FOURIER INTEGRALS AND APPLICATIONS 8Í where it is understood that if f x is not continuous at X the left side must be replaced by f x 0 f x-0 These results can be simplified somewhat if f x is either an odd or an even function and we have 2 f - 1 sin aX da z 00 1 f u sin au du 0 if f x is odd 5 f x 2 p 1 cos aX da 7T 7o s 00 1 fịụ cos au du 0 if f x IS even ff FOURIER TRANSFORMS From 4 it follows that if F e u du 1 r then f x I F 0 eiax da úilĩ J 00 7 S The function F a is called the Fourier transform of f x and is sometimes written F a F f x . The function f x is the inverse Fourier transform of F a .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.