Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
(BQ) Part 2 book "Kothandaraman fluid mechanics" has contents: Dimensional analysis, similitude and model testing, boundary layer theory and flow over surfaces, flow in open channels, dynamics of fluid flow, hydraulic turbines, rotodynamic pumps, reciprocating pumps. | & 8.0 Dimensional Analysis INTRODUCTION Fluid flow is influenced by several parameters like, the geometry, fluid properties and fluid velocity. In the previous chapters analytical methods used in fluid flow studies were discussed. In the study of flow of real fluids analytical methods alone are found insufficient. Experimental methods and results have contributed heavily for the development of fluid mechanics. The solution of realistic problems usually involves both anlytical and experimental studies. Experiments are used to validate analytical results as well as generalize and extend their applications. Depending either solely on analytical methods or experiments for the design of systems is found to lead to inadequate performance and high cost. Experimental work is rather costly and time consuming, particularly when more than three parameters are involved. Hence it is necessary to plan the experiments so that most information is obtained from fewest experiments. Dimensional analysis is found to be a very useful tool in achieving this objective. The mathematical method of dimensional analysis comes to our help in this situation. The number of parameters can be reduced generally to three by grouping relevant variables to form dimensionless parameters. In addition these groups facilitate the presentation of the results of the experiments effectively and also to generalize the results so that these can be applied to similar situations. Flow through pipes can be considered as an example. Viscosity, density, flow velocity and diameter are found to influence the flow. If the effect of each of these parameters on flow is separately studied the number of experiments will be large. Also these results cannot be generalized and its usefulness will be limited. When the number of these variables are combined to form a dimensionless group like (u D ρ/µ) few experiments will be sufficient to obtain useful information. This parameter can be varied by varying one of the .