Đang chuẩn bị liên kết để tải về tài liệu:
Partial open book decompositions and the contact class in sutured floer homology

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

We demonstrate how to combinatorially calculate the EH-class of a compatible contact structure in the sutured Floer homology group of a balanced sutured three manifold which is associated to an abstract partial open book decomposition. As an application we show that every contact three manifold (closed or with convex boundary) can be obtained by gluing tight contact handlebodies whose EH-classes are nontrivial. | Turk J Math 33 (2009) , 295 – 312. ¨ ITAK ˙ c TUB doi:10.3906/mat-0805-18 Partial open book decompositions and the contact class in sutured floer homology ¨ gcı Tolga Etg¨ u and Burak Ozba˘ Abstract We demonstrate how to combinatorially calculate the EH-class of a compatible contact structure in the sutured Floer homology group of a balanced sutured three manifold which is associated to an abstract partial open book decomposition. As an application we show that every contact three manifold (closed or with convex boundary) can be obtained by gluing tight contact handlebodies whose EH-classes are nontrivial. Key word and phrases: Partial open book decomposition, contact three-manifold with convex boundary, sutured manifold, sutured Floer homology, EH-contact class. 1. Introduction A sutured manifold (M, Γ) is a compact oriented 3 -manifold with nonempty boundary, together with a compact subsurface Γ = A(Γ) ∪ T (Γ) ⊂ ∂M , where A(Γ) is a union of pairwise disjoint annuli and T (Γ) is a union of tori. Moreover each component of ∂M \ Γ is oriented, subject to the condition that the orientation changes every time we nontrivially cross A(Γ). Let R+ (Γ) (resp. R− (Γ)) be the open subsurface of ∂M \ Γ on which the orientation agrees with (resp. is the opposite of ) the boundary orientation on ∂M . A sutured manifold (M, Γ) is balanced if M has no closed components, π0 (A(Γ)) → π0 (∂M ) is surjective, and χ(R+ (Γ)) = χ(R− (Γ)) on every component of M . It follows that if (M, Γ) is balanced, then Γ = A(Γ) and every component of ∂M nontrivially intersects Γ. Since all our sutured manifolds will be balanced in this paper, we can think of Γ as a set of oriented curves on ∂M by identifying each annulus in Γ with its core circle. Here Γ is oriented as the boundary of R+ (Γ). Let ξ be a contact structure on a compact oriented 3 -manifold M whose dividing set on the convex boundary ∂M is denoted by Γ. Then it is not too hard to see that (M, Γ) is a balanced sutured .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.