Đang chuẩn bị liên kết để tải về tài liệu:
Splitting of sharply 2-transitive groups of characteristic 3

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

We give a much simpler proof of this fact, in fact an experienced reader can directly go to the proof the Theorem, which contains only a simple computation. We give a group theoretic proof of the splitting of sharply 2-transitive groups of characteristic 3. | Turk J Math 28 (2004) , 295 – 298. ¨ ITAK ˙ c TUB Splitting of Sharply 2-Transitive Groups of Characteristic 3 Seyfi T¨ urkelli Abstract We give a group theoretic proof of the splitting of sharply 2-transitive groups of characteristic 3. Key Words: Sharply 2-transitive groups, Permutation groups. A sharply 2-transitive group is a pair (G, X), where G is a group acting on the set X in such a way that for all x, y, z, t ∈ X such that x 6= y and z 6= t there is a unique g ∈ G for which gx = z and gy = t. From now on, (G, X) will stand for a sharply 2-transitive group with |X| ≥ 3. We fix an element x ∈ X. We let H := {g ∈ G : gx = x} denote the stabilizer of x. Finally we let I denote the set of involutions (elements of order 2) of G. It follows easily from the definition that the group G has an involution; in fact any element of G that sends a distinct pair (y, z) of X to the pair (z, y) is an involution by sharp transitivity. It is also known that I is one conjugacy class and the nontrivial elements of I 2 cannot fix any point (See Lemma 1 and Lemma 4). Then one can see that I 2 cannot have an involution if H has an involution. In case H has no involution, one says that char(G) = 2. Let us assume that char(G) 6= 2. Then I 2 \ {1} is one conjugacy class [1, Lemma 11.45]. Since I 2 is closed under power taking, either the nontrivial elements of I 2 all have order p for some prime p 6= 2 or I 2 has no nontrivial torsion element. One writes char(G) = p or char(G) = 0 depending on the case. One says that G splits if the one point stabilizer H has a normal complement in G. It is not known whether or not an infinite sharply 2-transitive group splits, except for those 295 ¨ TURKELL I˙ of characteristic 3. Results in this direction for some special cases can be found in [1, §11.4] and [2, ch 2]. We will prove that if char(G) = 3 then G splits, a result of W. Kerby [2, Theorem 8.7]. But Kerby’s proof is in the language of near domains and is not easily accessible. .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.