Đang chuẩn bị liên kết để tải về tài liệu:
Approximation of analytic functions of several variables by linear k-positive operators

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

The approximation of analytic functions of complex variables by linear k-positive operators was first tackled in the work of Gadjiev. We investigate the approximation of analytic functions of several variables in polydiscs by the sequences of linear k-positive operators in the Gadjiev sense. | Turk J Math (2017) 41: 426 – 435 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ doi:10.3906/mat-1512-96 Research Article Approximation of analytic functions of several variables by linear k-positive operators T¨ ulin COS ¸ KUN∗ Department of Mathematics, B¨ ulent Ecevit University, Zonguldak, Turkey Received: 24.12.2015 • Accepted/Published Online: 25.05.2016 • Final Version: 03.04.2017 Abstract: We investigate the approximation of analytic functions of several variables in polydiscs by the sequences of linear k-positive operators in the Gadjiev sense. Key words: Analytic functions, linear k-positive operators, Korovkin-type theorems 1. Introduction The approximation of analytic functions of complex variables by linear k-positive operators was first tackled in the work of Gadjiev [5]. He introduced k-positive operators and formulated theorems of Korovkin’s type for these operators in the space of analytic functions on the unit disc. He proposed a method of proving such theorems, applied further on in many other articles (e.g., [1,3,6–13,15,16]). Some of the results from [1,5–7] were included in a monograph [2,14]. In his recent article [12], Gadjiev proved very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions. In this article we extend some of the result of Gadjiev to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators. 2. Preliminaries Let N and Z+ be the respective sets of positive and nonnegative numbers and C be the space of complex numbers. For n ∈ N let Sn := {z = (z1 , . . . , zn ) ∈ Cn : |zi | 1 . Therefore, if |m| = |k|, |fm − fk | ≤ 2M g|m| g|k| < 2 2M g|k| n ∑ (mj − kj )2 . j=1 The last two inequalities for |fm − fk | gives us that for all k and m 2 |fm − fk | ≤ 8M g|k| { √ √ n ( g|m| − g|k| )2 ∑ + (mj − kj )2 }. △2g .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.