Đang chuẩn bị liên kết để tải về tài liệu:
Spreading speeds in a lattice differential equation with distributed delay

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

This paper studies the spreading speed for a lattice differential equation with infinite distributed delay and we find that the spreading speed coincides with the minimal wave speed of traveling waves. Here the model has been proposed to describe a single species living in a 1D patch environment with infinite number of patches connected locally by diffusion. | Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Turk J Math (2015) 39 ¨ ITAK ˙ c TUB ⃝ doi:10.3906/mat-1404-69 Spreading speeds in a lattice differential equation with distributed delay Hui-Ling NIU∗,∗∗ School of Mathematics and Statistics, Lanzhou University, Lanzhou, P.R. China Received: 24.04.2014 • Accepted: 07.11.2014 • Published Online: 23.02.2015 • Printed: 20.03.2015 Abstract: This paper studies the spreading speed for a lattice differential equation with infinite distributed delay and we find that the spreading speed coincides with the minimal wave speed of traveling waves. Here the model has been proposed to describe a single species living in a 1D patch environment with infinite number of patches connected locally by diffusion. Key words: Lattice differential equation, infinite distributed delay, spreading speeds 1. Introduction In biological invasions, the spreading speed (short for the asymptotic speed of spread/propagation) is a very important notion, since it is used to describe the speed at which the geographic range of the species population expands [14, 20, 22, 29, 36, 38]. The concept of the spreading speed was first introduced by Aronson and Weinberger [2, 3] for reaction-diffusion equations and applied by Aronson [1] to an integrodifferential equation. A general theory of spreading speeds has been developed for monotone semiflows [19, 20, 21, 33], for integral and integrodifferential population models [8, 9, 29, 30, 31], for time-delayed reaction-diffusion equations [31, 37], and for lattice differential equations [4, 34]. Recently, Hsu and Zhao [14] and Li et al. [18] extended the theory of spreading speeds in nonmonotone integrodifference equations and Fang et al. [10] in nonmonotone discretedelayed lattice equations. Lattice differential equations arise in many applied subjects, such as chemical reaction, image processing, material science, and biology [7, 15, 17, 28]. In the models of lattice

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.