Đang chuẩn bị liên kết để tải về tài liệu:
Anti-invariant Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

he purpose of this paper is to study anti-invariant Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds. Several fundamental results in this respect are proved. The integrability of the distributions and the geometry of foliations are investigated. | Turk J Math (2016) 40: 540 – 552 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ doi:10.3906/mat-1504-47 Research Article Anti-invariant Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds ˙ Irem ˙ ¨ Ay¸se BERI, KUPEL I˙ ERKEN∗, Cengizhan MURATHAN Department of Mathematics, Faculty of Arts and Science, Uluda˘ g University, Bursa, Turkey Received: 16.04.2015 • Accepted/Published Online: 04.09.2015 • Final Version: 08.04.2016 Abstract: The purpose of this paper is to study anti-invariant Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds. Several fundamental results in this respect are proved. The integrability of the distributions and the geometry of foliations are investigated. We proved the nonexistence of (anti-invariant) Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds such that the characteristic vector field ξ is a vertical vector field. We gave a method to get horizontally conformal submersion examples from warped product manifolds onto Riemannian manifolds. Furthermore, we presented an example of anti-invariant Riemannian submersions in the case where the characteristic vector field ξ is a horizontal vector field and an anti-invariant horizontally conformal submersion such that ξ is a vertical vector field. Key words: Riemannian submersion, conformal submersion,Warped product, Kenmotsu manifold, Anti-invariant Riemannian submersion 1. Introduction Riemannian submersions between Riemannian manifolds were studied by O’Neill [16] and Gray [9]. Riemannian submersions have several applications in mathematical physics. Indeed, Riemannian submersions have their applications in the Yang–Mills theory [4, 27], Kaluza–Klein theory [5, 10], supergravity and superstring theories [11, 28], etc. Later such submersions were considered between manifolds with differentiable structures; see [8]. Furthermore, we have the following submersions: semi-Riemannian .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.