Đang chuẩn bị liên kết để tải về tài liệu:
On modules which satisfy the radical formula

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

In this paper, the authors prove that every representable module over a commutative ring with identity satisfies the radical formula. With this result, they extend the class of modules satisfying the radical formula from that of Artinian modules to a larger one. They conclude their work by giving a description of the radical of a submodule of a representable module. | Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Turk J Math (2013) 37: 195 – 201 ¨ ITAK ˙ c TUB doi:10.3906/mat-1103-9 On modules which satisfy the radical formula B¨ ulent SARAC ¸ ∗, Y¨ ucel TIRAS ¸ Department of Mathematics, Hacettepe University, 06532, Beytepe, Ankara, Turkey Received: 04.03.2011 • Accepted: 28.01.2012 • Published Online: 19.03.2013 • Printed: 22.04.2013 Abstract: In this paper, the authors prove that every representable module over a commutative ring with identity satisfies the radical formula. With this result, they extend the class of modules satisfying the radical formula from that of Artinian modules to a larger one. They conclude their work by giving a description of the radical of a submodule of a representable module. Key words: Prime submodule, prime radical, radical formula, secondary module, secondary representation, representable module 1. Introduction Throughout this work R will denote a commutative ring with identity and every module will be unitary. Let M be an R -module. For submodules K and L of M, we use the notation (K : L) to show the ideal {r ∈ R : rL ≤ K} of R. A proper submodule N of M is said to be prime submodule of M, if, for every r ∈ R and m ∈ M, rm ∈ N implies m ∈ N or r ∈ (N : M ). It is not difficult to see that if N is a prime submodule of M and P = (N : M ) then P is a prime ideal of R and, in this case, we say that N is P -prime. It is easy to see that if M = R prime ideals and prime submodules of R coincide. For any submodule N of M , the (prime) radical of N in M, denoted by radM (N ), is defined to be the intersection of all prime submodules of M containing N. (If there is no such prime submodule in M we put radM (N ) = M ). It is not easy to calculate the radical of a submodule, in general. Several authors tried to give simple descriptions for the radical in some particular cases. In this note, we shall need the notion of the envelope of a submodule introduced by

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.