Đang chuẩn bị liên kết để tải về tài liệu:
Semi-slant and bi-slant submanifolds of almost contact metric 3-structure manifolds

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

In this paper we introduce the notions of semi-slant and bi-slant submanifolds of an almost contact 3-structure manifold. We give some examples and characterization theorems about these submanifolds. Moreover, the distributions of semi-slant submanifolds of 3-cosymplectic and 3-Sasakian manifolds are studied. | Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Turk J Math (2013) 37: 1030 – 1039 ¨ ITAK ˙ c TUB ⃝ doi:10.3906/mat-1207-35 Semi-slant and bi-slant submanifolds of almost contact metric 3-structure manifolds Fereshteh MALEK,∗ Mohammad Bagher KAZEMI BALGESHIR Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran Received: 25.07.2012 • Accepted: 18.12.2012 • Published Online: 23.09.2013 • Printed: 21.10.2013 Abstract: In this paper we introduce the notions of semi-slant and bi-slant submanifolds of an almost contact 3-structure manifold. We give some examples and characterization theorems about these submanifolds. Moreover, the distributions of semi-slant submanifolds of 3-cosymplectic and 3-Sasakian manifolds are studied. Key words: Almost contact 3-structure manifold, semi-slant and bi-slant submanifold, 3-Sasakian manifold 1. Introduction After slant submanifolds of complex manifolds were introduced by Chen [6], the properties of slant submanifolds became an interesting subjects in differential geometry, both in complex geometry and in contact geometry. Lotta [9] introduced this notion in contact manifolds and Cabrerizo et al. [4] studied widely in this area and found many interesting results, especially on slant submanifolds of Sasakian manifolds. On the other hand, Papaghiuc [12] defined semi-slant submanifolds as a generalization of slant and CR-submanifolds. Carriazo [5] generalized these notions by introducing bi-slant submanifolds. Moreover, in [3], the authors investigated bi-slant and semi-slant submanifolds of Sasakian manifolds. From then on, many authors have studied these types of submanifolds when the ambient manifolds have been endowed with other structures such as trans-Sasakian and Kenmotsu [1, 14, 15, 17]. In fact, one of the important reasons for studying slant and semi-slant submanifolds is that they are a generalization of invariant, anti-invariant, semi-invariant, and .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.