Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Bài giảng "Toán T2 - Chương 3 Không gian vector" cung cấp cho người học các kiến thức: Định nghĩa và các tính chất cơ bản, tổ hợp tuyến tính, cơ sở và số chiều của không gian vector, không gian vector con, tọa độ và ma trận chuyển cơ sở,. . | Baøi giaûng moân hoïc Toaùn T2 Nguyeãn Anh Thi 2015 Chöông 3 KHOÂNG GIAN VECTOR Ñònh nghóa Cho V laø moät taäp hôïp khaùc ∅. Ta noùi V laø moät khoâng gian vector treân R neáu trong V i) toàn taïi moät pheùp toaùn "coäng vector", töùc laø moät aùnh xaï V×V → V (u, v) 7→ u + v ii) toàn taïi moät pheùp "nhaân voâ höôùng vôùi vector", töùc laø moät aùnh xaï R×V → V (α, u) 7→ αu thoûa caùc tính chaát sau: vôùi moïi u, v, w ∈ V vaø α, β ∈ R Ñònh nghóa 1. u + v = v + u; 2. (u + v) + w = u + (v + w); 3. ∃0 ∈ V, u + 0 = 0 + u = u; 4. ∃(−u) ∈ V, (−u) + u = u + (−u) = 0; 5. (αβ)u = α(βu); 6. (α + β)u = αu + βu; 7. α(u + v) = αu + βv; 8. 1.u = u. Khi ñoù ta goïi : I moãi phaàn töû u ∈ V laø moät vector. I moãi soá α ∈ R laø moät voâ höôùng. I vector 0 laø vector khoâng. I vector (−u) laø vector ñoái cuûa .