TAILIEUCHUNG - Nonholonomic Mechanical Systems with Symmetry

This work develops the geometry and dynamics of mechanical systems with nonholonomic constraints and symmetry from the perspective of Lagrangian me- chanics and with a view to control-theoretical applications. The basic methodology is that of geometric mechanics applied to the Lagrange-d’Alembert formulation, generalizing the use of connections and momentum maps associated with a given symmetry group to this case. We begin by formulating the mechanics of nonholo- nomic systems using an Ehresmann connection to model the constraints, and show how the curvature of this connection enters into Lagrange’s equations. Unlike the situationwith standard configuration-space constraints, the presence of symmetries in the nonholonomic case may or may not lead to. | Arch. Rational Mech. Anal. 136 1996 21-99. Springer-Verlag 1996 Nonholonomic Mechanical Systems with Symmetry Anthony M. Bloch P S. Krishnaprasad Jerrold E. Marsden Richard M. Murray Communicated by P. Holmes Table of Contents Abstract. 21 1. Introduction. 22 2. Constraint Distributions and Ehresmann Connections. 30 3. Systems with Symmetry. 38 4. The Momentum Equation. 47 5. A Review of Lagrangian Reduction. 57 6. The Nonholonomic Connection and Reconstruction. 62 7. The Reduced Lagrange-d Alembert Equations. 70 8. Examples . 77 9. Conclusions. 94 References. 95 Abstract This work develops the geometry and dynamics of mechanical systems with nonholonomic constraints and symmetry from the perspective of Lagrangian mechanics and with a view to control-theoretical applications. The basic methodology is that of geometric mechanics applied to the Lagrange-d Alembert formulation generalizing the use of connections and momentum maps associated with a given symmetry group to this case. We begin by formulating the mechanics of nonholo-nomic systems using an Ehresmann connection to model the constraints and show how the curvature of this connection enters into Lagrange s equations. Unlike the situation with standard configuration-space constraints the presence of symmetries in the nonholonomic case may or may not lead to conservation laws. However the momentum map determined by the symmetry group still satisfies a useful differential equation that decouples from the group variables. This momentum equation which plays an important role in control problems involves parallel transport operators and is computed explicitly in coordinates. An alternative description using 22 A. Bloch et al. a body reference frame relates part of the momentum equation to the components of the Euler-Poincare equations along those symmetry directions consistent with the constraints. one of the purposes of this paper is to derive this evolution equation for the momentum and to distinguish .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.