TAILIEUCHUNG - Báo cáo khoa học: "Natural Language Generation as Planning Under Uncertainty for Spoken Dialogue Systems"

We present and evaluate a new model for Natural Language Generation (NLG) in Spoken Dialogue Systems, based on statistical planning, given noisy feedback from the current generation context (. a user and a surface realiser). We study its use in a standard NLG problem: how to present information (in this case a set of search results) to users, given the complex tradeoffs between utterance length, amount of information conveyed, and cognitive load. We set these trade-offs by analysing existing MATCH data. We then train a NLG policy using Reinforcement Learning (RL), which adapts its behaviour to noisy feedback from. | Natural Language Generation as Planning Under Uncertainty for Spoken Dialogue Systems Verena Rieser School of Informatics University of Edinburgh vrieser@ Oliver Lemon School of Informatics University of Edinburgh olemon@ Abstract We present and evaluate a new model for Natural Language Generation NLG in Spoken Dialogue Systems based on statistical planning given noisy feedback from the current generation context . a user and a surface realiser . We study its use in a standard NLG problem how to present information in this case a set of search results to users given the complex tradeoffs between utterance length amount of information conveyed and cognitive load. We set these trade-offs by analysing existing MATCH data. We then train a NLG policy using Reinforcement Learning RL which adapts its behaviour to noisy feedback from the current generation context. This policy is compared to several baselines derived from previous work in this area. The learned policy significantly outperforms all the prior approaches. 1 Introduction Natural language allows us to achieve the same communicative goal what to say using many different expressions how to say it . In a Spoken Dialogue System SDS an abstract communicative goal CG can be generated in many different ways. For example the CG to present database results to the user can be realized as a summary Polifroni and Walker 2008 Demberg and Moore 2006 or by comparing items Walker et al. 2004 or by picking one item and recommending it to the user Young et al. 2007 . Previous work has shown that it is useful to adapt the generated output to certain features of the dialogue context for example user preferences . Walker et al. 2004 Demberg and Moore 2006 user knowledge . Janarthanam and Lemon 2008 or predicted TTS quality . Nakatsu and White 2006 . In extending this previous work we treat NLG as a statistical sequential planning problem analogously to current statistical approaches to Dialogue .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.