TAILIEUCHUNG - Báo cáo khoa học: "Skip N-grams and Ranking Functions for Predicting Script Events"

In this paper, we extend current state-of-theart research on unsupervised acquisition of scripts, that is, stereotypical and frequently observed sequences of events. We design, evaluate and compare different methods for constructing models for script event prediction: given a partial chain of events in a script, predict other events that are likely to belong to the script. Our work aims to answer key questions about how best to (1) identify representative event chains from a source text, (2) gather statistics from the event chains, and (3) choose ranking functions for predicting new script events. . | Skip N-grams and Ranking Functions for Predicting Script Events Bram Jans Steven Bethard KU Leuven University of Colorado Boulder Leuven Belgium Boulder Colorado USA Ivan VuliC KU Leuven Leuven Belgium Abstract In this paper we extend current state-of-the-art research on unsupervised acquisition of scripts that is stereotypical and frequently observed sequences of events. We design evaluate and compare different methods for constructing models for script event prediction given a partial chain of events in a script predict other events that are likely to belong to the script. Our work aims to answer key questions about how best to 1 identify representative event chains from a source text 2 gather statistics from the event chains and 3 choose ranking functions for predicting new script events. We make several contributions introducing skip-grams for collecting event statistics designing improved methods for ranking event predictions defining a more reliable evaluation metric for measuring predictiveness and providing a systematic analysis of the various event prediction models. 1 Introduction There has been recent interest in automatically acquiring world knowledge in the form of scripts Schank and Abelson 1977 that is frequently recurring situations that have a stereotypical sequence of events such as a visit to a restaurant. All of the techniques so far proposed for this task share a common sub-task given an event or partial chain of events predict other events that belong to the same script Chambers and Jurafsky 2008 Chambers and Jurafsky 2009 Chambers and Ju-rafsky 2011 Manshadi et al. 2008 McIntyre and Lapata 2009 McIntyre and Lapata 2010 Regneri et al. 2010 . Such a model can then serve as input to a system that identifies the order of the events Marie Francine Moens KU Leuven Leuven Belgium within that script Chambers and Jurafsky 2008 Chambers and Jurafsky 2009

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.