TAILIEUCHUNG - Bài giảng Xử lý số tín hiệu (Digital signal processing) - Chương 3: Các hệ thống thời gian rời rạc (Bài tập)

Chương này cung cấp 4 bài tập và bài giải chi tiết liên quan đến các kiến thức đã học từ bài giảng Xử lý số tín hiệu (Digital signal processing) - Chương 3: Các hệ thống thời gian rời rạc. . | Bài tập Xử lý số tín hiệu Chương 3: Các hệ thống thời gian rời rạc Bài Xác định tính chất tuyến tính, bất biến của hệ thống y(n) = 3x(n) + 5 y(n) = x2(n-1) + x(2n) y(n) = ex(n) y(n) = nx(n – 3) + 3x(n) y(n) = n + 3x(n) Giải câu 1 (các câu còn lại tương tự) Kiểm tra tính tuyến tính: Gọi y1(n), y2(n) là đầu ra tương ứng với đầu vào x1(n), x2(n) y1(n) = 3x1(n) + 5 y2(n) = 3x2(n) + 5 Khi đầu vào là x(n) = a1x1(n) + a2x2(n) thì đầu ra là y(n) = 3x(n) + 5 = 3(a1x1(n) + a2x2(n)) + 5 = (n) + a2. 3x2(n) + 5 (1) - Tổ hợp của y1(n) và y2(n) là (n) + (n) = a1[3x1(n) + 5] + a2[3x2(n) + 5] = (n) + (n) + 5(a1 + a2) (2) So sánh (1) và (2) thì y(n) khác (n) + (n) nên hệ thống không có tính tuyến tính Bài Bài Kiểm tra tính bất biến Cho tín hiệu vào là xD(n) = x(n – D), gọi đầu ra tương ứng là yD(n): yD(n) = 3xD(n) + 5 = 3x(n – D) + 5 Đầu ra y(n) làm trễ đi D mẫu là y(n – D) = 3x(n – D) + 5 yD(n) = y(n – D) hệ thống có tính bất biến Bài Xác định .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.