TAILIEUCHUNG - Báo cáo khoa học: "Classifying Recognition Results for Spoken Dialog Systems"

This paper investigates the correlation between acoustic confidence scores as returned by speech recognizers with recognition quality. We report the results of two machine learning experiments that predict the word error rate of recognition hypotheses and the confidence error rate for individual words within them. | Classifying Recognition Results for Spoken Dialog Systems Malte Gabsdil Deptartment of Computational Linguistics Saarland University Germany gabsdil@ Abstract This paper investigates the correlation between acoustic confidence scores as returned by speech recognizers with recognition quality. We report the results of two machine learning experiments that predict the word error rate of recognition hypotheses and the confidence error rate for individual words within them. 1 Introduction Acoustic confidence scores as computed by speech recognizers play an important role in the design of spoken dialog systems. Often systems solely decide on the basis of an overall acoustic confidence score whether they should accept consider correct clarify ask for confirmation or reject prompt for repeat rephrase the interpretation of an user utterance. This behavior is usually achieved by setting two fixed confidence thresholds if the confidence score of an utterance is above the upper threshold it is accepted when it is below the lower threshold it is rejected and clarification is initiated in case the confidence score lies in between the two thresholds. The GoDiS spoken dialog system Larsson and Ericsson 2002 is an example of such a system. More elaborated and flexible system behavior can be achieved by making use of individual word confidence scores or slot-confidences1 that allow more fine-grained de 1 Some recognition platforms allow the application programmer to associate semantic slot values with certain words of an input utterance. The slot-con dence is then de ned as th acoustic confi dence for the words that make up this silo. cisions as to which parts of an utterance are not sufficiently well understood. The aim of this paper is to investigate how well acoustic confidences correlate with recognition quality and to use machine learning ML techniques to improve this correlation. In particular we will conduct two different experiments. First we try to predict .

TÀI LIỆU MỚI ĐĂNG
309    152    0    10-01-2025
5    184    1    10-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.