TAILIEUCHUNG - Báo cáo khoa học: "Combining Lexical, Syntactic, and Semantic Features with Maximum Entropy Models for Extracting Relations"

Extracting semantic relationships between entities is challenging because of a paucity of annotated data and the errors induced by entity detection modules. We employ Maximum Entropy models to combine diverse lexical, syntactic and semantic features derived from the text. Our system obtained competitive results in the Automatic Content Extraction (ACE) evaluation. Here we present our general approach and describe our ACE results. | Combining Lexical Syntactic and Semantic Features with Maximum Entropy Models for Extracting Relations Nanda Kambhatla IBM T. J. Watson Research Center 1101 Kitchawan Road Route 134 Yorktown Heights NY 10598 nanda@ Abstract Extracting semantic relationships between entities is challenging because of a paucity of annotated data and the errors induced by entity detection modules. We employ Maximum Entropy models to combine diverse lexical syntactic and semantic features derived from the text. Our system obtained competitive results in the Automatic Content Extraction ACE evaluation. Here we present our general approach and describe our ACE results. 1 Introduction Extraction of semantic relationships between entities can be very useful for applications such as biography extraction and question answering . to answer queries such as Where is the Taj Mahal . Several prior approaches to relation extraction have focused on using syntactic parse trees. For the Template Relations task of MUC-7 BBN researchers Miller et al. 2000 augmented syntactic parse trees with semantic information corresponding to entities and relations and built generative models for the augmented trees. More recently Zelenko et al. 2003 have proposed extracting relations by computing kernel functions between parse trees and Culotta and Sorensen 2004 have extended this work to estimate kernel functions between augmented dependency trees. We build Maximum Entropy models for extracting relations that combine diverse lexical syntactic and semantic features. Our results indicate that using a variety of information sources can result in improved recall and overall F measure. Our approach can easily scale to include more features from a multitude of . WordNet gazat-teers output of other semantic taggers can be brought to bear on this task. In this paper we present our general approach describe the features we currently use and show the results of our participation in the ACE

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.