TAILIEUCHUNG - Báo cáo khoa học: "Classifying Semantic Relations in Bioscience Texts"

A crucial step toward the goal of automatic extraction of propositional information from natural language text is the identification of semantic relations between constituents in sentences. We examine the problem of distinguishing among seven relation types that can occur between the entities “treatment” and “disease” in bioscience text, and the problem of identifying such entities. We compare five generative graphical models and a neural network, using lexical, syntactic, and semantic features, finding that the latter help achieve high classification accuracy. . | Classifying Semantic Relations in Bioscience Texts Barbara Rosario SIMS UC Berkeley Berkeley CA 94720 rosario@ Marti A. Hearst SIMS UC Berkeley Berkeley CA 94720 hearst@ Abstract A crucial step toward the goal of automatic extraction of propositional information from natural language text is the identification of semantic relations between constituents in sentences. We examine the problem of distinguishing among seven relation types that can occur between the entities treatment and disease in bioscience text and the problem of identifying such entities. We compare five generative graphical models and a neural network using lexical syntactic and semantic features finding that the latter help achieve high classification accuracy. 1 Introduction The biosciences literature is rich complex and continually growing. The National Library of Medicine s MEDLINE database1 contains bibliographic citations and abstracts from more than 4 600 biomedical journals and an estimated half a million new articles are added every year. Much of the important late-breaking bioscience information is found only in textual form and so methods are needed to automatically extract semantic entities and the relations between them from this text. For example in the following sentences hepatitis and its variants which are DISEASES are found in different semantic relationships with various treatments 1 http pubs factsheets 1 Effect of interferon on hepatitis B 2 A two-dose combined hepatitis A and B vaccine would facilitate immunization programs 3 These results suggest that con A-induced hepatitis was ameliorated by pretreatment with TJ-135. In 1 there is an unspecified effect of the treatment interferon on hepatitis B. In 2 the vaccine prevents hepatitis A and B while in 3 hepatitis is cured by the treatment TJ-135. We refer to this problem as Relation Classification. A related task is Role Extraction also called in the literature .

TÀI LIỆU MỚI ĐĂNG
28    165    1    10-01-2025
5    184    1    10-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.