TAILIEUCHUNG - Báo cáo khoa học: "Coreference Resolution Using Semantic Relatedness Information from Automatically Discovered Patterns"

Semantic relatedness is a very important factor for the coreference resolution task. To obtain this semantic information, corpusbased approaches commonly leverage patterns that can express a specific semantic relation. The patterns, however, are designed manually and thus are not necessarily the most effective ones in terms of accuracy and breadth. To deal with this problem, in this paper we propose an approach that can automatically find the effective patterns for coreference resolution. We explore how to automatically discover and evaluate patterns, and how to exploit the patterns to obtain the semantic relatedness information. . | Coreference Resolution Using Semantic Relatedness Information from Automatically Discovered Patterns Xiaofeng Yang Jian Su Institute for Infocomm Research 21 Heng Mui Keng Terrace Singapore 119613 xiaofengy sujian @ Abstract Semantic relatedness is a very important factor for the coreference resolution task. To obtain this semantic information corpusbased approaches commonly leverage patterns that can express a specific semantic relation. The patterns however are designed manually and thus are not necessarily the most effective ones in terms of accuracy and breadth. To deal with this problem in this paper we propose an approach that can automatically find the effective patterns for coreference resolution. We explore how to automatically discover and evaluate patterns and how to exploit the patterns to obtain the semantic relatedness information. The evaluation on ACE data set shows that the pattern based semantic information is helpful for coreference resolution. 1 Introduction Semantic relatedness is a very important factor for coreference resolution as noun phrases used to refer to the same entity should have a certain semantic relation. To obtain this semantic information previous work on reference resolution usually leverages a semantic lexicon like WordNet Vieira and Poe-sio 2000 Harabagiu et al. 2001 Soon et al. 2001 Ng and Cardie 2002 . However the drawback of WordNet is that many expressions especially for proper names word senses and semantic relations are not available from the database Vieira and Poe-sio 2000 . In recent years increasing interest has 528 been seen in mining semantic relations from large text corpora. One common solution is to utilize a pattern that can represent a specific semantic relation . X such as Y for is-a relation and X and other Y for other-relation . Instantiated with two given noun phrases the pattern is searched in a large corpus and the occurrence number is used as a measure of their semantic relatedness

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.