TAILIEUCHUNG - Báo cáo khoa học: "Vector-based Models of Semantic Composition"

This paper proposes a framework for representing the meaning of phrases and sentences in vector space. Central to our approach is vector composition which we operationalize in terms of additive and multiplicative functions. Under this framework, we introduce a wide range of composition models which we evaluate empirically on a sentence similarity task. Experimental results demonstrate that the multiplicative models are superior to the additive alternatives when compared against human judgments. . | Vector-based Models of Semantic Composition Jeff Mitchell and Mirella Lapata School of Informatics University of Edinburgh 2 Buccleuch Place Edinburgh EH8 9LW UK mlap@ Abstract This paper proposes a framework for representing the meaning of phrases and sentences in vector space. Central to our approach is vector composition which we operationalize in terms of additive and multiplicative functions. Under this framework we introduce a wide range of composition models which we evaluate empirically on a sentence similarity task. Experimental results demonstrate that the multiplicative models are superior to the additive alternatives when compared against human judgments. 1 Introduction Vector-based models of word meaning Lund and Burgess 1996 Landauer and Dumais 1997 have become increasingly popular in natural language processing NLP and cognitive science. The appeal of these models lies in their ability to represent meaning simply by using distributional information under the assumption that words occurring within similar contexts are semantically similar Harris 1968 . A variety of NLP tasks have made good use of vector-based models. Examples include automatic thesaurus extraction Grefenstette 1994 word sense discrimination Schutze 1998 and disambiguation McCarthy et al. 2004 collocation extraction Schone and Jurafsky 2001 text segmentation Choi et al. 2001 and notably information retrieval Salton et al. 1975 . In cognitive science vector-based models have been successful in simulating semantic priming Lund and Burgess 1996 Landauer and Dumais 1997 and text comprehension Landauer and Dumais 1997 Foltz et al. 1998 . Moreover the vector similarities within such semantic spaces have been shown to substantially correlate with human similarity judgments McDonald 2000 and word association norms Denhire and Lemaire 2004 . Despite their widespread use vector-based models are typically directed at representing words in isolation and methods .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.