TAILIEUCHUNG - Báo cáo khoa học: "Does Size Matter – How Much Data is Required to Train a REG Algorithm?"

In this paper we investigate how much data is required to train an algorithm for attribute selection, a subtask of Referring Expressions Generation (REG). To enable comparison between different-sized training sets, a systematic training method was developed. The results show that depending on the complexity of the domain, training on 10 to 20 items may already lead to a good performance. | Does Size Matter - How Much Data is Required to Train a REG Algorithm Mariet Theune University of Twente . Box 217 7500 AE Enschede The Netherlands Ruud Koolen Tilburg University PO. Box 90135 5000 LE Tilburg The Netherlands Emiel Krahmer Tilburg University PO. Box 90135 5000 LE Tilburg The Netherlands Sander Wubben Tilburg University PO. Box 90135 5000 LE Tilburg The Netherlands Abstract In this paper we investigate how much data is required to train an algorithm for attribute selection a subtask of Referring Expressions Generation REG . To enable comparison between different-sized training sets a systematic training method was developed. The results show that depending on the complexity of the domain training on 10 to 20 items may already lead to a good performance. 1 Introduction There are many ways in which we can refer to objects and people in the real world. A chair for example can be referred to as red large or seen from the front while men may be singled out in terms of their pogonotrophy facial hairstyle clothing and many other attributes. This poses a problem for algorithms that automatically generate referring expressions how to determine which attributes to use One solution is to assume that some attributes are preferred over others and this is indeed what many Referring Expressions Generation REG algorithms do. A classic example is the Incremental Algorithm IA which postulates the existence of a complete ranking of relevant attributes Dale and Reiter 1995 . The IA essentially iterates through this list of preferred attributes selecting an attribute for inclusion in a referring expression if it helps singling out the target from the other objects in the scene the distractors . Crucially Dale and Reiter do not specify how the ranking of attributes should be determined. They refer to psycholinguistic research 660 suggesting that in general absolute attributes such as color are .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.