TAILIEUCHUNG - Báo cáo khoa học: "Hierarchical Joint Learning: Improving Joint Parsing and Named Entity Recognition with Non-Jointly Labeled Data"

One of the main obstacles to producing high quality joint models is the lack of jointly annotated data. Joint modeling of multiple natural language processing tasks outperforms single-task models learned from the same data, but still underperforms compared to single-task models learned on the more abundant quantities of available single-task annotated data. In this paper we present a novel model which makes use of additional single-task annotated data to improve the performance of a joint model. . | Hierarchical Joint Learning Improving Joint Parsing and Named Entity Recognition with Non-Jointly Labeled Data Jenny Rose Finkel and Christopher D. Manning Computer Science Department Stanford University Stanford CA 94305 jrfinkel manning @ Abstract One of the main obstacles to producing high quality joint models is the lack of jointly annotated data. Joint modeling of multiple natural language processing tasks outperforms single-task models learned from the same data but still underperforms compared to single-task models learned on the more abundant quantities of available single-task annotated data. In this paper we present a novel model which makes use of additional single-task annotated data to improve the performance of a joint model. Our model utilizes a hierarchical prior to link the feature weights for shared features in several single-task models and the joint model. Experiments on joint parsing and named entity recognition using the OntoNotes corpus show that our hierarchical joint model can produce substantial gains over a joint model trained on only the jointly annotated data. 1 Introduction Joint learning of multiple types of linguistic structure results in models which produce more consistent outputs and for which performance improves across all aspects of the joint structure. Joint models can be particularly useful for producing analyses of sentences which are used as input for higher-level more semantically-oriented systems such as question answering and machine translation. These high-level systems typically combine the outputs from many low-level systems such as parsing named entity recognition NER and coreference resolution. When trained separately these single-task models can produce outputs which are inconsistent with one another such as named entities which do not correspond to any nodes in the parse tree see Figure 1 for an example . Moreover one expects that the different types of annotations should provide useful information

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.