TAILIEUCHUNG - Báo cáo khoa học: "Smaller Alignment Models for Better Translations: Unsupervised Word Alignment with the 0"

Two decades after their invention, the IBM word-based translation models, widely available in the GIZA++ toolkit, remain the dominant approach to word alignment and an integral part of many statistical translation systems. Although many models have surpassed them in accuracy, none have supplanted them in practice. | Smaller Alignment Models for Better Translations Unsupervised Word Alignment with the 0-norm Ashish Vaswani Liang Huang David Chiang University of Southern California Information Sciences Institute avaswani Ihuang chiang @ Abstract Two decades after their invention the IBM word-based translation models widely available in the GIZA toolkit remain the dominant approach to word alignment and an integral part of many statistical translation systems. Although many models have surpassed them in accuracy none have supplanted them in practice. In this paper we propose a simple extension to the IBM models an ỉ0 prior to encourage sparsity in the word-to-word translation model. We explain how to implement this extension efficiently for large-scale data also released as a modification to GIZA and demonstrate in experiments on Czech Arabic Chinese and Urdu to English translation significant improvements over IBM Model 4 in both word alignment up to F1 and translation quality up to B . 1 Introduction Automatic word alignment is a vital component of nearly all current statistical translation pipelines. Although state-of-the-art translation models use rules that operate on units bigger than words like phrases or tree fragments they nearly always use word alignments to drive extraction of those translation rules. The dominant approach to word alignment has been the IBM models Brown et al. 1993 together with the HMM model Vogel et al. 1996 . These models are unsupervised making them applicable to any language pair for which parallel text is available. Moreover they are widely disseminated in the open-source GIZA toolkit Och and Ney 2004 . These properties make them the default choice for most statistical MT systems. 311 In the decades since their invention many models have surpassed them in accuracy but none has supplanted them in practice. Some of these models are partially supervised combining unlabeled parallel text with manually-aligned parallel text Moore 2005 .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.