TAILIEUCHUNG - Báo cáo khoa học: "A Nonparametric Bayesian Approach to Acoustic Model Discovery"

We investigate the problem of acoustic modeling in which prior language-specific knowledge and transcribed data are unavailable. We present an unsupervised model that simultaneously segments the speech, discovers a proper set of sub-word units (., phones) and learns a Hidden Markov Model (HMM) for each induced acoustic unit. | A Nonparametric Bayesian Approach to Acoustic Model Discovery Chia-ying Lee and James Glass Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Cambridge MA 02139 USA chiaying jrg @ Abstract We investigate the problem of acoustic modeling in which prior language-specific knowledge and transcribed data are unavailable. We present an unsupervised model that simultaneously segments the speech discovers a proper set of sub-word units . phones and learns a Hidden Markov Model HMM for each induced acoustic unit. Our approach is formulated as a Dirichlet process mixture model in which each mixture is an HMM that represents a sub-word unit. We apply our model to the TIMIT corpus and the results demonstrate that our model discovers sub-word units that are highly correlated with English phones and also produces better segmentation than the state-of-the-art unsupervised baseline. We test the quality of the learned acoustic models on a spoken term detection task. Compared to the baselines our model improves the relative precision of top hits by at least and outperforms a language-mismatched acoustic model. 1 Introduction Acoustic models are an indispensable component of speech recognizers. However the standard process of training acoustic models is expensive and requires not only language-specific knowledge . the phone set of the language a pronunciation dictionary but also a large amount of transcribed data. Unfortunately these necessary data are only available for a very small number of languages in the world. Therefore a procedure for training acoustic models without annotated data would not only be a breakthrough from the traditional approach but 40 would also allow us to build speech recognizers for any language efficiently. In this paper we investigate the problem of unsupervised acoustic modeling with only spoken utterances as training data. As suggested in Garcia and Gish 2006 unsupervised acoustic .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.