TAILIEUCHUNG - Đề thi toán Quốc tế 2007

2 Consider ve points A, B , C , D and E such that ABC D is a parallelogram and BC E D is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that ` intersects the interior of the segment DC at F and intersects line BC at G. Suppose also that E F = E G = E C . Prove that ` is the bisector of angle DAB . 3 In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a clique if each two of them. | IMO 2007 Ha Noi Vietnam Day 1 - 25 July 2007 T Real numbers 1 tt2 . an are given. For each 3 1 i n define di max ữỹ I 1 j 0 min ữỹ I i j n and let d max I 1 i n . a Prove that for any real numbers X x 2 xn max xi CLi I 1 i n Ệ-. b Show that there are real numbers Xi X2 xn such that the equality holds in . 2 Consider five points A B ơ D and E such that ABCD is a parallelogram and BCED is a cyclic quadrilateral. Let f be a line passing through A. Suppose that Ể. intersects the interior of the segment DC at F and intersects line BC at G. Suppose also that EF EG EC. Prove that -Ể is the bisector of angle DAB. -3 In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a clique if each two of them are friends. In particular any group of fewer than two competitiors is a clique. The number of members of a clique is called its size. Given that in this competition the largest size of a clique is even prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room. This file was downloaded from the AoPS MathLinks Math Olympiad Resources Page http Page 1 http MathLinks Everyone IMO 2007 Ha Noi Vietnam Day 2 - 26 July 2007 ỊTỊ In triangle ABC the bisector of angle BCA intersects the circumcircle again at R the perpendicular bisector of BC at p and the perpendicular bisector of AC at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that the triangles RPK and RQL have the same area. 5 Let a and b be positive integers. Show that if 4ab 1 divides 4tt2 I 2 then a b. 6 Let n be a positive integer. Consider s x y z I X ý z e 0 1 . n X y z 0 as a set of n I 3 1 points in the three-dimensional space. Determine the smallest possible number of planes the union of which contains s but does not include 0 0 0 . This file was downloaded from the AoPS

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.