TAILIEUCHUNG - Atomic Force Microscopy: Biomedical Methods and Applications

Highly experienced physicians and biologists clearly explain the basic technical knowledge needed to use AFM and demonstrate its multifarious uses in biomedicine and the life sciences. The applications range widely from morphostructural analyses of cellular structures, to the investigation of subcellular structures, to functional investigations, and reveal a powerful new way of looking at biological samples. The methods clearly demonstrate the advantages of AFM over traditional life science microscopy, among them simultaneous very high magnification and resolution, minimal tissue and cell preparation, and the ability to obtain different views of the sample from a single data collection | Methods in Molecular Biology VOLUME 242 Atomic Forced ft A atffl u Microscopy Biomedical Methods and Applications Edited by Pier Carlo Braga II Davide Ricci I Humana Press 1 How the Atomic Force Microscope Works Davide Ricci and Pier Carlo Braga 1. Introduction Microscopes have always been one of the essential instruments for research in the biomedical field. Radiation-based microscopes such as the light microscope and the electron microscope have become trustworthy companions in the laboratory and have contributed greatly to our scientific knowledge. However although digital techniques in recent years have still enhanced their performance the limits of their inherent capabilities have been progressively reached. The advent of scanning probe microscopes and especially of the atomic force microscope AFM ref. 1 has opened new perspectives in the investigation of biomedical specimens and induces to look again with rejuvenated excitement at what we can learn by looking at our samples. Novices are at first mesmerized by two features the name of the instrument and the colorful 3D computer visualization of surfaces. One later learns that quite often it is not possible to obtain the atomic resolution that one hoped to achieve 2-4 but that nevertheless images do contain details not observable with any other instrument. The tri-dimensional mapping of the surface gains scientific relevance when one realizes that it is not just fancy surface reconstruction but that true topographic data with vertical resolution down to the subnanometer range is readily available. Moreover when simplified sample preparation and the possibility of investigating specimens in liquid environment become apparent one becomes convinced that he or she must find a way to apply AFM to his or her own research. 2. Performance Range of AFM AFM images show significant information about surface features with unprecedented clarity. The AFM can examine any sufficiently rigid surface From Methods in Molecular .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.