TAILIEUCHUNG - Đề tài " Radon inversion on Grassmannians via G˚ardingGindikin fractional integrals "

We study the Radon transform Rf of functions on Stiefel and Grassmann manifolds. We establish a connection between Rf and G˚ arding-Gindikin fractional integrals associated to the cone of positive definite matrices. By using this connection, we obtain Abel-type representations and explicit inversion formulae for Rf and the corresponding dual Radon transform. We work with the space of continuous functions and also with Lp spaces. | Annals of Mathematics Radon inversion on Grassmannians via G arding-Gindikin fractional integrals By Eric L. Grinberg and Boris Rubin Annals of Mathematics 159 2004 783 817 Radon inversion on Grassmannians via Garding-Gindikin fractional integrals By Eric L. Grinberg and Boris Rubin Abstract We study the Radon transform Rf of functions on Stiefel and Grassmann manifolds. We establish a connection between Rf and Garding-Gindikin fractional integrals associated to the cone of positive definite matrices. By using this connection we obtain Abel-type representations and explicit inversion formulae for Rf and the corresponding dual Radon transform. We work with the space of continuous functions and also with Lp spaces. 1. Introduction Let Gn k Gn k be a pair of Grassmann manifolds of linear fc-dimensional and fc -dimensional subspaces of Rn respectively. Suppose that 1 fc k n 1. A point n Gn k Gn k is a nonoriented fc-plane fc -plane in Rn passing through the origin. The Radon transform of a sufficiently good function f n on Gn k is a function Rf on the Grassmannian Gn k . The value of Rf Ệ at the fc -plane Ệ is the integral of the fc-plane function f n over all fc-planes n which are subspaces of Ệ 1-1 Rf y f nMn Gn k n -n i dịn being the canonical normalized measure on the space of planes n in In the present paper we focus on inversion formulae for Rf leaving aside such important topics as range characterization affine Grassmannians the complex case geometrical applications and further possible generalizations. Concerning these topics the reader is addressed to fundamental papers by . Gel fand and collaborators F. Gonzalez P. Goodey . Grinberg S. Helgason T. Kakehi . Petrov . Strichartz and others. This work was supported in part by NSF grant DMS-9971828. The second author also was supported in part by the Edmund Landau Center for Research in Mathematical Analysis and Related Areas sponsored by the Minerva Foundation Germany . 784 ERIC L. GRINBERG AND BORIS

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.