TAILIEUCHUNG - ON BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER DISCRETE INCLUSIONS ´ PETR STEHLIK AND CHRISTOPHER C.

ON BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER DISCRETE INCLUSIONS ´ PETR STEHLIK AND CHRISTOPHER C. TISDELL Received 8 October 2004 We prove some existence theorems regarding solutions to boundary value problems for systems of second-order discrete inclusions. For a certain class of right-hand sides, we present some lemmas showing that all solutions to discrete second-order inclusions satisfy an a priori bound. Then we apply these a priori bounds, in conjunction with an appropriate fixed point theorem for inclusions, to obtain the existence of solutions. The theory is highlighted with several examples. 1. Introduction The theory of differential inclusions has received much attention due. | ON BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER DISCRETE INCLUSIONS PETR STEHLÍK AND CHRISTOPHER C. TISDELL Received 8 October 2004 We prove some existence theorems regarding solutions to boundary value problems for systems of second-order discrete inclusions. For a certain class of right-hand sides we present some lemmas showing that all solutions to discrete second-order inclusions satisfy an a priori bound. Then we apply these a priori bounds in conjunction with an appropriate fixed point theorem for inclusions to obtain the existence of solutions. The theory is highlighted with several examples. 1. Introduction The theory of differential inclusions has received much attention due to its versatility and generality. For example differential inclusions can accurately model discontinuous processes such as systems with dry friction the work of an electric oscillator and autopilot and other control systems 8 . When considering these or other situations in discrete time the modeling process gives rise to a discrete or difference inclusion rather than a differential inclusion. In many cases considering the model in discrete time gives a more precise or realistic description 1 . Let X and Y be two normed spaces. A set-valued map G X Y is a map that associates with any x e X a set G x c Y. By CK E we denote the set of nonempty convex and closed subsets of a Banach space E. We say that G R CK R is upper semicontinuous if for all sequences Ui Q R Vi c R where i e N the conditions ui u0 Vi v0 and Vi e G ui imply that v0 e G u0 . Since the upper semicontinuity plays an essential role in this paper we illustrate this notion by the simple example 5 Example . Example . The set-valued map f1 R R defined by f1 t 0 0 1 for t 0 for t e R 0 is not upper semicontinuous. On the other hand the set-valued map f2 R R defined Copyright 2005 Hindawi Publishing Corporation BoundaryValueProblems 2005 2 2005 153-163 DOI 154 On BVP for second-order discrete .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.