TAILIEUCHUNG - Intro to Differential Geometry and General Relativity - S. Warner Episode 4

Tham khảo tài liệu 'intro to differential geometry and general relativity - s. warner episode 4', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | b Let 0 be a scalar field. Its ambient gradient grad 0 is given by grad 0 . . . I0 ỔJ1 dJs that is the garden-variety gradient you learned about in calculus. This gradient is in general neither covariant or contravariant. However we can use it to obtain a 1-form as follows If V is any contravariant vector field then the rate of change of 0 along V is given by 0. If V happens to be a unit vector at some point then this is the directional derivative at that point. In other words dotting with grad 0 assigns to each contravariant vector field the scalar field F v 0 which tells it how fast 0 is changing along V. We also get the 1-form identities F V W F V F W F aV aF V . The coordinates of the corresponding covariant vector field are F d dx a dxl .grad 0 dy1 dy2 dy d0 d0 ax dxi . dxi . dyi . . . dys d0 s dxl which is the example that first motivated the definition. c Generalizing b let be any smooth vector field in Es defined on M. Then the operation of dotting with is a linear function from smooth tangent fields on M to smooth scalar fields. Thus it is a cotangent field on M with local coordinates given by applying the linear function to the canonical charts d dxl Ci d dx . The gradient is an example of this since we are taking grad 0 in the preceding example. Note that in general dotting with depends only on the tangent component of . This leads us to the next example. d If V is any tangent contravariant field then we can appeal to c above and obtain an associated covariant field. The coordinates of this field are not the same as those of V. To find them we write d V V See Note 4 . dx 31 Hence C d T i d d d V T V . dX dx dX dx Note that the tangent vectors d dx are not necessarily orthogonal so the dot products don t behave as simply as we might suspect. We let gịỊ 7 j 777 so that dX dx Cj g jV We shall see the quantities gjj again presently. Definition If V and W are contravariant or covariant vector fields on M and if a is a real number we can

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.