TAILIEUCHUNG - Bài giảng lý thuyết đồ thị - Chương 1

Tham khảo tài liệu 'bài giảng lý thuyết đồ thị - chương 1', y tế - sức khoẻ, y học thường thức phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Giáo án môn Lý Thuyết Đô Thị GIÁO ÁN MÔN LÝ THUYẾT ĐỒ THỊ Số tiết học 60 tiết 45 tiết lý thuyết 15 tiết thực hành Tài liệu tham khảo 1 Toán rời rạc PGS. TS Đỗ Đức Giáo Nhà xuất bản Đại học Quốc gia Hà Nội 2002 2 Toán rời rạc Nguyễn Đức Nghĩa Nguyễn Tô Thành Nhà xuất bản Đại học Quốc gia Hà Nội 2003 3 Giáo trình Lý thuyết đồ thị Nguyễn Thanh Hùng Nguyễn Đức Nghĩa 4 Toán học rời rạc ứng dụng trong tin học Dịch từ Discrete Mathematics and Its Applications Nhà xuất bản khoa học kỹ thuật Chương 1 CÁC KHÁI NIỆM CƠ BẢN CỦA LÝ THUYẾT ĐỒ THỊ 9 tiết Giới thiệu Lý thuyết đồ thị là nghành khoa học đã có từ lâu nhưng lại có rất nhiều ứng dụng hiện đại. Những ý tưởng cơ sở ban đầu của nó được đưa ra từ những năm đầu thế kỷ 18 bởi nhà toán học người Thuỵ Sỹ là Leonhard Euler. Lý thuyết đồ thị được dùng để giải quyết các bài toán thuộc nhiều lĩnh vực khác nhau. Chẳng hạn Dùng mô hình đồ thị để xác định xem hai máy tính trong một mạng máy tính có trao đổi thông tin được với nhau hay không . Đồ thị với các trọng số được gắn cho các cạnh có thể dùng để giải quyết bài toán tìm đường đi ngắn nhất giữa hai thành phố trong một mạng lưới giao thông. Chúng ta cũng có thể phân biệt các hợp chất hoá học có cùng công thức phân tử nhưng có cấu trúc khác nhau nhờ vào đồ thị. Các định nghĩa và tính chất cơ bản Định nghĩa 1 Giả sử V là một tập khác rỗng các phần tử nào đó và E a VxV E là tập con của tích đề các VxV . Bộ G V E được gọi là một đồ thị. Mỗi phần tử v e V được gọi là một đỉnh của đồ thị V được gọi là tập các đỉnh của đồ thị. Mỗi phần tử e u v e E được gọi là một cạnh của đồ thị E được gọi là tập các cạnh của đồ thị. Ví dụ 1 G V v1 v2 v3 v4 . E e1 v1 v2 e2 v1 v3 e3 v2 v3 e4 v3 v4 . Như vậy ta có thể hình dung đồ thị là một cấu trúc rời rạc gồm các đỉnh và các cạnh nối các đỉnh này với nhau. 1 Nguyễn Minh Đức - ĐHQG Hà Nội Giáo án môn Lý Thuyết Đô Thị Chú ý Nếu tập V là tập hữu hạn các phần tử thì G V E được gọi là đồ thị hữu hạn. Từ đây về sau chủ yếu ta nghiên cứu các đồ thị .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.