TAILIEUCHUNG - Applied Structural and Mechanical Vibrations 2009 Part 9

Tham khảo tài liệu 'applied structural and mechanical vibrations 2009 part 9', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | The eigenfuncions are written Ớ A ------ Inrfnmr f sin ttỡ cos mớ where the constant A which a priori can depend on both n and m can be fixed by means of normalization. Different boundary conditions lead to more complicated calculations for example if our plate is simply supported at r R the boundary conditions to be imposed on the solution are from eq UJ M - 0 at r R and in polar coordinates the bending moment Mr is written explicitly M -D d2w i1 dw 1 d2w dr2 dr r1 de1 Things are even worse for a completely free plate in fact in this case the boundary conditions read eq _ 1 dM s Mr QT 0 r de where Mr is as above and the transverse shearing force Qr and the twisting moment Mre are given by ớ Q -DJvM dr _ d i 1 dm dr r de Rectangular plates Due to its importance in many fields of applied engineering let us now consider a uniform rectangular plate extending in the domain 0 X c a and 0 y b. The equation of motion of free vibrations is again which assuming a harmonic time dependence becomes eq for the function of the space variables u u x y . As in the preceding case this equation can be written as V2 72 v2 n 2 M 0 Copyright 2003 Taylor Francis Group LLC and we can express its solution as M Ml M2. Obviously it is now convenient to adopt a system of rectangular coordinates so that the Laplacian and biharmonic operators are written explicitly as The function u1 satisfies the equation V2 72 i 0 by separating the space variables and looking for a solution in the form Ui x y 1 x gi y we arrive at the two equations where a2 fl2 y2. Equations have the solutions 1 x A sin ax 4- B cos ax gỊ y c sin fly 4- D cos fly so that Ml x y Al sin ax sin fly Az sin ax cos fly 4- A3 cos ax sin fly A4 cosax cos fly The equation satisfied by the function u2 is V2 4- i7 2 M2 0 implying that its solution can be obtained from eq by replacing the trigonometric functions by hyperbolic functions. This means that we can write the

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.