TAILIEUCHUNG - Báo cáo " On the matheron theorem for topological spaces"

In this paper we study the extending of the Matheron theorem for general topological spaces. We also show some examples about the spaces F such that the miss-and-hit topology on those spaces are unseparated or non-Hausdorff. 1. Introduction The Choquet theorem (see [1, 2]) plays very importance role in theory of random sets. The proof of this theorem is based on the Matheron theorem and especially, the locally compact property of the space F , where F is a space of all close subsets of a given space E and F is equipped with the miss-and-hit topology (see [1]). . | VNU Journal of Science Mathematics - Physics 23 2007 194-200 On the matheron theorem for topological spaces Dau The Cap1 Bui Dinh Thang2 1 Hochiminh city University of Pedagogy 280 An Duong Vuong Dist 5 Hochiminh city Vietnam Saigon University 273 An Duong Vuong Dist 5 Hochiminh city Vietnam Received 15 September 2007 received in revised form 1 November 2007 Abstract. In this paper we study the extending of the Matheron theorem for general topological spaces. We also show some examples about the spaces F such that the miss-and-hit topology on those spaces are unseparated or non-Hausdorff. 1. Introduction The Choquet theorem see 1 2 plays very importance role in theory of random sets. The proof of this theorem is based on the Matheron theorem and especially the locally compact property of the space F where F is a space of all close subsets of a given space E and F is equipped with the miss-and-hit topology see 1 . The Matheron theorem is stated as follows. Theorem. Let E be a complete separable and locally compact metric space. Then the miss-and-hit topology on F space of all closed subsets of E is compact separable and Hausdorff Note that the natural domain of the probability theory is a Polish space which is in general not locally compact. So in 3 the authors extended the Matheron theorem for general metric space. They showed that if E is a separable metric space then the miss-and-hit topology on space F is separable and compact. And if E has a non-locally compact point then the miss-and-hit topology on space F is not Hausdorff. Now we extend the Matheron theorem for general topological space. Let E be a topological space. Denote F K and G the families of all close compact and open subsets of E respectively. For every A c E we denote Fa F F eF F n A 0 FA F F eF F n A 0 . For every K E K and a finite family of sets G1 . Gn eg n E N we put FK G. F K n F. n Fc . Then F- . Gn K EK Gi . Gn eg n E N is a base of topology on F. Which is called a miss-and-hit topology on

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.