TAILIEUCHUNG - Đề tài " Bilipschitz maps, analytic capacity, and the Cauchy integral "

Let ϕ : C → C be a bilipschitz map. We prove that if E ⊂ C is compact, and γ(E), α(E) stand for its analytic and continuous analytic capacity respectively, then C −1 γ(E) ≤ γ(ϕ(E)) ≤ Cγ(E) and C −1 α(E) ≤ α(ϕ(E)) ≤ Cα(E), where C depends only on the bilipschitz constant of ϕ. Further, we show that if µ is a Radon measure on C and the Cauchy transform is bounded on L2 (µ), then the Cauchy transform is also bounded on L2 (ϕ µ), where ϕ µ is the image measure of µ by. | Annals of Mathematics Bilipschitz maps analytic capacity and the Cauchy integral By Xavier Tolsa Annals of Mathematics 162 2005 1243-1304 Bilipschitz maps analytic capacity and the Cauchy integral By Xavier Tolsa Abstract Let ip C C be a bilipschitz map. We prove that if E c C is compact and y E a E stand for its analytic and continuous analytic capacity respectively then C-1Y E Y p E Cy E and C-1a E a p E Ca E where C depends only on the bilipschitz constant of . Further we show that if 1 is a Radon measure on C and the Cauchy transform is bounded on L2 i then the Cauchy transform is also bounded on L2 h where Pịp is the image measure of 1 by . To obtain these results we estimate the curvature of Pịp by means of a corona type decomposition. 1. Introduction A compact set E c C is said to be removable for bounded analytic functions if for any open set Q containing E every bounded function analytic on Q E has an analytic extension to Q. In order to study removability in the 1940 s Ahlfors Ah introduced the notion of analytic capacity. The analytic capacity of a compact set E c C is y e sup to where the supremum is taken over all analytic functions f C E C with If I 1 on C E and f TO lim. x z f z - f to . In Ah Ahlfors proved that E is removable for bounded analytic functions if and only if Y E 0. Painleve s problem consists of characterizing removable singularities for bounded analytic functions in a metric geometric way. By Ahlfors result this is equivalent to describing compact sets with positive analytic capacity in metric geometric terms. Partially supported by the program Ramon y Cajal Spain and by grants BFM2000-0361 and MTM2004-00519 Spain 2001-SGR-00431 Generalitat de Catalunya and HPRN-2000-0116 European Union . 1244 XAVIER TOLSA Vitushkin in the 1950 s and 1960 s showed that analytic capacity plays a central role in problems of uniform rational approximation on compact sets of the complex plane. Further he introduced the continuous analytic capacity a .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.