TAILIEUCHUNG - Đề tài " Geometric Langlands duality and representations of algebraic groups over commutative rings "

In this paper we give a geometric version of the Satake isomorphism [Sat]. As such, it can be viewed as a first step in the geometric Langlands program. The connected complex reductive groups have a combinatorial classification by their root data. In the root datum the roots and the co-roots appear in a symmetric manner and so the connected reductive algebraic groups come ˇ in pairs. | Annals of Mathematics Geometric Langlands duality and representations of algebraic groups over commutative rings By I. Mirkovi c andK. Vilonen Annals of Mathematics 166 2007 95 143 Geometric Langlands duality and representations of algebraic groups over commutative rings By I. MiRKOVic and K. ViLONEN 1. Introduction In this paper we give a geometric version of the Satake isomorphism Sat . As such it can be viewed as a first step in the geometric Langlands program. The connected complex reductive groups have a combinatorial classification by their root data. In the root datum the roots and the co-roots appear in a symmetric manner and so the connected reductive algebraic groups come in pairs. If G is a reductive group we write G for its companion and call it the dual group G. The notion of the dual group itself does not appear in Satake s paper but was introduced by Langlands together with its various elaborations in L1 L2 and is a cornerstone of the Langlands program. It also appeared later in physics MO GNO . In this paper we discuss the basic relationship between G and G. We begin with a reductive G and consider the affine Grassmannian Qr the Grassmannian for the loop group of G. For technical reasons we work with formal algebraic loops. The affine Grassmannian is an infinite dimensional complex space. We consider a certain category of sheaves the spherical perverse sheaves on Qr. These sheaves can be multiplied using a convolution product and this leads to a rather explicit construction of a Hopf algebra by what has come to be known as Tannakian formalism. The resulting Hopf algebra turns out to be the ring of functions on G. In this interpretation the spherical perverse sheaves on the affine Grassmannian correspond to finite dimensional complex representations of G. Thus instead of defining G in terms of the classification of reductive groups we provide a canonical construction of G starting from G. We can carry out our construction over the integers. The .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.