TAILIEUCHUNG - Advanced Mathematical Methods for Scientists and Engineers Episode 2 Part 4

Tham khảo tài liệu 'advanced mathematical methods for scientists and engineers episode 2 part 4', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Cauchy s Integral Formula Result Cauchy s Integral Formula. If f Z is analytic in a compact closed connected domain D and z is a point in the interior of D then f z -C 4 f ZL dz -C v f dz. 12n JdD z z 12n k J k z - z Here the set of contours Ck make up the positively oriented boundary dD of the domain D. More generally we have fw z _nL f z dZ _n_ V -fl dZ. f z - L Z z dZ 2 ỲẤ Z z n 1 dZ. Cauchy s Formula shows that the value of f z and all its derivatives in a domain are determined by the value of f z on the boundary of the domain. Consider the first formula of the result Equation . We deform the contour to a circle of radius Ỗ about the point z z. fizldi f z - f z dZ Jcs z - z z z We use the result of Example to evaluate the first integral. f dZ I2nf Z CỖ f Zf dZ z z 494 The remaining integral along Cs vanishes as Ỏ 0 because f z is continuous. We demonstrate this with the maximum modulus integral bound. The length of the path of integration is 2nd. lim i - dz limf 2nd - max If Z f z T-0 Jcs z z T-oV ỗ z-z J lim 2n max If z f z I T-0 Í-Z Ổ 0 This gives us the desired result. f z i2n JC ff dz z z dZ We derive the second formula Equation from the first by differentiating with respect to z. Note that the integral converges uniformly for z in any closed subset of the interior of C. Thus we can differentiate with respect to z and interchange the order of differentiation and integration. f n z -1 d f z f i2n dzn JC z z -L ị ẫ f ZL dz i2n C dzn z z _n_ i f z dz 12n Jc z z n 1 Example Consider the following integrals where C is the positive contour on the unit circle. For the third integral the point z 1 is removed from the contour. 2. ỈC z 3 13z 1 dz .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.