TAILIEUCHUNG - Advanced Mathematical Methods for Scientists and Engineers Episode 1 Part 4

Tham khảo tài liệu 'advanced mathematical methods for scientists and engineers episode 1 part 4', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 0 e 2 there is no value of 0 0 such that sin 1 x1 sin 1 x2 e for all x1 x2 e 0 1 and x1 x21 0. Thus sin 1 x is not uniformly continuous in the open interval 0 1 . Solution First consider the function x. Note that the function ựx 0 x is a decreasing function of x and an increasing function of 0 for positive x and 0. Thus for any fixed 0 the maximum value of Vx 0 x is bounded by ựõ. Therefore on the interval 0 1 a sufficient condition for l x L e is x e e2. The function x is uniformly continuous on the interval 0 1 . Consider any positive 0 and e. Note that 1 7 x x 0 for 1 x - 2 0 Thus there is no value of 0 such that 1 1 e x e for all x e 0. The function 1 is not uniformly continuous on the interval 0 1 . Solution Let the function f x be continuous on a closed interval. Consider the function e x 0 sup f e f x . í-x ổ Since f x is continuous e x 0 is a continuous function of x on the same closed interval. Since continuous functions on closed intervals are bounded there is a continuous increasing function e 0 satisfying e x 0 e 0 for all x in the closed interval. Since e 0 is continuous and increasing it has an inverse 0 e . Now note that f x f e e for aH x and e in the closed interval satisfying x e 0 e . Thus the function is uniformly continuous in the closed interval. 94 Solution 1. The statement lim an L n X is equivalent to V e 0 3 N . n N an L e. We want to show that V 5 0 3 M . m M a2 L2 5. Suppose that an L e. We obtain an upper bound on n L2 . a L2 an L an L C 2L e Now we choose a value of e such that n L2 5 e 2L e 5 e L2 5 L Consider any fixed 5 0. We see that since fore L2 5 L 3 N . n N an L e implies that n N a L2 5. Therefore V 5 0 3 M . m M a2 L2 5. We conclude that limn x an L2. 2. limn_ x an L2 does not imply that limn_ x an L. Consider an 1. In this case limn_ x an 1 and limn an 1. .

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
28    152    1    29-11-2024
309    134    0    29-11-2024
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.