TAILIEUCHUNG - Báo cáo toán học: "Bounds on the number of bound states for the Schroedinger equation in one and two dimensions "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Giới hạn về số lượng của các quốc gia bị ràng buộc đối với phương trình Schroedinger trong Một và Hai Kích thước. | Copyright by INCREST 1983 J. OPERATOR THEORY 10 1983 119- 125 BOUNDS ON THE NUMBER OF BOUND STATES FOR THE SCHRỠDINGER EQUATION IN ONE AND TWO DIMENSIONS ROGER G. NEWTON 1. INTRODUCTION It is well known that the Birman-Schwinger method 2 6 8 for estimating the number of bound states of the Schrodinger equation cannot be directly applied in R and R2. The reason is that in these cases the Green s function of the Lippmann--Schwinger equation possesses no finite limit as 0. In R it diverges as and in R2 as Inl-E l. As a consequence no bound on the number of bound states is explicitly known in R2. In this paper we prove such bounds by a suitable modification of the Birman-Schwinger method both for local and nonlocal potentials. The necessary modification was in fact introduced by this author 5 in 1962 in a context in which its relevance to R and R2 was not recognized. The bound there derived for the number of Regge trajectories for local central potentials in R3 that lead to z 1 2 as E 0 was 00 r ị dr ị dr rr tZ r Z7 r ln r r 1 0 1 i ------------------------ ị dr rt r 0 where 2 U x supio - V x X e R . This bound is also an upper limit for the number of rotationally invariant bound states for a local central potential in R2. 120 ROGER G. NEWTON The method of Reference 5 is applicable whenever the kernel K of the modified Lippmann-Schwinger equation for u . K - Ĩ71 2 t71 2 S -- E Ho 1 near E 0- is of the form 3 K P-rK where K is self-adjoint and in the trace-class and has a finite norm-limit as E - 0- p is an orthogonal projection on a one-dimensional subspace spanned by a unit vector p and Ẹ increases without bounds as E - 0-. Let a be the eigenvalues of K E . Then the crux of the Birman-Schwinger method is the recognition that the number n E of bound states of energies not greater than E is equal to the number of eigenvalues an E of K E that are not less than 1. Therefore trÁ a E n E . n However since 3 implies that as E - 0- the leading eigenvalue oq - oo this .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.