TAILIEUCHUNG - Independent And Stationary Sequences Of Random Variables - Chapter 2

Chapter 2 STABLE DISTRIBUTIONS ; ANALYTICAL PROPERTIES AND DOMAINS OF ATTRACTION § 1. Stable distributions Definition . A distribution function F is called stable if, for any a 1 , a2 0 and any b1 , b2 , there exist constants a 0 and b such that F(a l x+b l ) * F(a 2 x+b2) = F(ax+b) . ( .1) | Chapter 2 STABLE DISTRIBUTIONS ANALYTICAL PROPERTIES AND DOMAINS OF ATTRACTION 1. Stable distributions Definition. A distribution function F is called stable if for any ar a2 0 and any b1 b2 there exist constants a Q and b such that F a1x b1 F a2x b2 F ax b . It clearly suffices to take b2 b2 0. Then in terms of the characteristic function of F becomes t a1 t a2 f t a e ibt. Interest in the stable distributions is motivated by the fact that under weak assumptions they are the only possible limiting distributions of normed sums Zn X2 Xn - An of stationarily dependent random variables. In this section we establish this result for independent random variables the general case is dealt with in Theorem . Theorem . In order that a distribution function F be the weak limit of the distribution of Zn for some sequence of independent identically distributed random variables it is necessary and sufficient that F be stable. If this is so then unless F is degenerate the constants Bn in must take the form Bn nll h n where 0 a 2 and h n is a slowly varying function in the sense of Karamata. 38 STABLE DISTRIBUTIONS Chap. 2 Proof. Let be the common characteristic function of the Xh and let be the characteristic function corresponding to the distribution F. Since a degenerate distribution is trivially stable we exclude this case and prove that necessarily lim Bn oo lim Bn 1 Bn 1 . n oo n oo Suppose that the first condition in does not hold so that there is a subsequence B k with limit B oo. Then i i Bjr i t i i o i so that for all t i tBj 1 l o l . This is possible only if t 1 for all t which implies that F is degenerate. Thus the first part of is proved so that lim t B 1 1 . n oo Thus and ir t B 1 i i i0 t i i O i . Substituting Bnt Bn x for t in the former and then Bn j t B for t in the latter we deduce that as n- oo lim lim 1 . If B JBn-f l we can find a subsequence of either Bn JB or B Bn J converging to some B 1.

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.