TAILIEUCHUNG - Handbook of Applied Cryptography - chap3

The security of many public-key cryptosystems relies on the apparent intractability of the computational problems studied in this chapter. In a cryptographic setting, it is prudent to make the assumption that the adversary is very powerful. Thus, informally speaking, a computational problem is said to be easy or tractable if it can be solved in (expected)1 polynomial time, at least for a non-negligible fraction of all possible inputs. In otherwords, if there is an algorithm which can solve a non-negligible fraction of all instances of a problem in polynomial time, then any cryptosystem whose security is based on that problem must be considered insecure | This is a Chapter from the Handbook of Applied Cryptography by A. Menezes P. van Oorschot and S. Vanstone CRC Press 1996. For further information see hac CRC Press has granted the following specihc permissions for the electronic version of this book Permission is granted to retrieve print and store a single copy of this chapter for personal use. This permission does not extend to binding multiple chapters of the book photocopying or producing copies for other than personal use of the person creating the copy or making electronic copies available for retrieval by others without prior permission in writing from CRC Press. Except where over-ridden by the specihc permission above the standard copyright notice from CRC Press applies to this electronic version Neither this book nor any part may be reproduced or transmitted in any form or by any means electronic or mechanical including photocopying microhlming and recording or by any information storage or retrieval system without prior permission in writing from the publisher. The consent of CRC Press does not extend to copying for general distribution for promotion for creating new works or for resale. Specihc permission must be obtained in writing from CRC Press for such copying. @1997 by CRC Press Inc. Chapter kJJ Number-Theoretic Reference Problems Contents in Brief Introduction and overview. 87 The integer factorization problem. 89 The RSA problem. 98 The quadratic residuosity problem. 99 Computing square roots in Zn. 99 The discrete logarithm problem .103 The Diffie-Hellman Composite Computing individual The subset sum Factoring polynomials over finite Notes and further Introduction and overview The security of many public-key cryptosystems relies on the apparent intractability of the computational problems studied in this chapter. In a cryptographic setting it is .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.