TAILIEUCHUNG - Đề thi - Toán học, Olympic toán toàn quốc - Việt nam 1999

Đề thi - Toán học, Olympic toán toàn quốc - Việt nam 1999 | Đề thi:Toán học, Olympic toán toàn quốc - Việt nam 1999 Bài từ Tủ sách Khoa học VLOS A1. Find all real solutions to (1 + 42x-y)(5y-2x+1) = 22x-y+1 + 1, y3 + 4x + ln(y2 + 2x) + 1 = 0. A2. ABC is a triangle. A' is the midpoint of the arc BC of the circumcircle not containing A. B' and C' are defined similarly. The segments A'B', B'C', C'A' intersect the sides of the triangle in six points, two on each side. These points divide each side of the triangle into three parts. Show that the three middle parts are equal iff ABC is equilateral. A3. The sequence a1, a2, a3, . is defined by a1 = 1, a2 = 2, an+2 = 3an+1 - an. The sequence b1, b2, b3, . is defined by b1 = 1, b2 = 4, bn+2 = 3bn+1 - bn. Show that the positive integers a, b satisfy 5a2 - b2 = 4 iff a = an, b = bn for some n. B1. Find the maximum value of 2/(x2 + 1) - 2/(y2 + 1) + 3/(z2 + 1) for positive reals x, y, z which satisfy xyz + x + z = y. B2. OA, OB, OC, OD are 4 rays in space such that the angle between any two is the same. Show that for a variable ray OX, the sum of the cosines of the angles XOA, XOB, XOC, XOD is constant and the sum of the squares of the cosines is also constant. B3. Find all functions f(n) defined on the non-negative integers with values in the set {0, 1, 2, . , 2000} such that: (1) f(n) = n for 0 d" n d" 2000; and (2) f( f(m) + f(n) ) = f(m + n) for all m,n

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.