TAILIEUCHUNG - Mathematical optimization

mathematical optimization least-squares and linear programming convex optimization example course goals and topics nonlinear optimization brief history of convex optimization | Convex Optimization — Boyd & Vandenberghe 1. Introduction mathematical optimization • least-squares and linear programming • convex optimization • example • course goals and topics • nonlinear optimization • brief history of convex optimization • 1–1 Mathematical optimization (mathematical) optimization problem minimize f0(x) subject to f (x) b , i = 1, . . . , m i ≤ i x = (x , . . . , x ): optimization variables • 1 n f : Rn R: objective function • 0 → f : Rn R, i = 1, . . . , m: constraint functions • i → ? optimal solution x has smallest value of f0 among all vectors that satisfy the constraints Introduction 1–2 Examples portfolio optimization variables: amounts invested in different assets • constraints: budget, max./min. investment per asset, minimum return • objective: overall risk or return variance • device sizing in electronic circuits variables: device widths and lengths • constraints: manufacturing limits, timing requirements, maximum area • objective: power consumption • data fitting variables: model parameters • constraints: prior information, parameter limits • objective: measure of misfit or prediction error • Introduction 1–3 Solving optimization problems general optimization problem very difficult to solve • methods involve some compromise, ., very long computation time, or • not always finding the solution exceptions: certain problem classes can be solved efficiently and reliably least-squares problems • linear programming problems • convex optimization problems • Introduction 1–4 Least-squares minimize Ax b 2 k − k2 solving least-squares problems analytical solution: x? = (AT A)−1AT b • reliable and efficient algorithms and software • computation time proportional to n2k (A Rk×n); less if structured • ∈ a mature technology • using least-squares least-squares problems are easy to recognize • a few standard techniques increase flexibility (., including weights, • adding regularization terms) Introduction 1–5 Linear programming minimize cT x subject to .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.