TAILIEUCHUNG - On exponential stability of bidirectional associative memory neural networks with time-varying delays

For bidirectional associate memory neural networks with time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated by employing the Lyapunov functional method and linear matrix inequality (LMI) technique. A novel criterion for the stability, which give information on the delay-dependent property, is derived. | ARTICLE IN PRESS Available online at ScienceDirect CHAOS SOLITONS FRACTALS ELSEVIER Chaos Solitons and Fractals xxx 2007 xxx-xxx locate chaos On exponential stability of bidirectional associative memory neural networks with time-varying delays Ju H. Park a . Lee b . Kwon c a Department of Electrical Engineering Yeungnam University 214-1 Dae-Dong Kyongsan 712-749 Republic of Korea b Platform Verification Division BcN Business Unit KT Co. Ltd. Daejeon Republic of Korea c School of Electrical and Computer Engineering Chungbuk National University Cheongju 361-763 Republic of Korea Accepted 19 April 2007 Abstract For bidirectional associate memory neural networks with time-varying delays the problems of determining the exponential stability and estimating the exponential convergence rate are investigated by employing the Lyapunov functional method and linear matrix inequality LMI technique. A novel criterion for the stability which give information on the delay-dependent property is derived. A numerical example is given to demonstrate the effectiveness of the obtained results. 2007 Elsevier Ltd. All rights reserved. 1. Introduction As an extension of the unidirectional autoassociator of Hopfield 1 Kosko 2 has proposed a series of neural networks related to bidirectional associative memory BAM . This class of networks has good application in the area of pattern recognition and artificial intelligence. Therefore the BAM neural networks has been one of the most interesting research topics and has attracted the attention of many researchers. For instance refer to Refs. 3-10 . Also time delay will inevitably occur in the communication and response of neurons owing to the unavoidable finite switching speed of amplifiers in the electronic implementation of analog neural networks so it is more in accordance with this fact to study the BAM neural networks with time delays. The existence of time delay is frequently a source of .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.