TAILIEUCHUNG - Viết phương trình tiếp tuyến

Bài toán 1: Viết phương trình tiếp tuyến của đồ thị hàm số 1. Tại một điểm trên đồ thị. 2. Tại điểm có hoành độ trên đồ thị. 3. Tại điểm có tung độ trên | Viết phương trình tiếp tuyến Bài toán 1: Viết phương trình tiếp tuyến của đồ thị hàm số : 1. Tại một điểm trên đồ thị. 2. Tại điểm có hoành độ trên đồ thị. 3. Tại điểm có tung độ trên đồ thị. 4. Tại giao điểm của đồ thị với trục tung . 5. Tại giao điểm của đồ thị với trục hoành . *Phương pháp: Phương trình tiếp tuyến(PTTT) : Của : tại Viết được là phải tìm ; và là hệ số góc của tiếp tuyến. Giải các câu trên lần lượt như sau Câu 1: - Tính . Rồi tính . - Viết PTTT: Câu 2: - Tính . Rồi tính . - Tính tung độ ,(bằng cách) thay vào biểu thức của hàm số để tính . - Viết PTTT: . Câu 3: - Tính hoành độ bằng cách giải pt . - Tính . Rồi tính . - Sau khi tìm được và thì viết PTTT tại mỗi điểm tìm được. Câu 4: - Tìm tọa độ giao điểm của đồ thị với trục : Cho và tính ; – Tính . Rồi tính ; - Viết PTTT:: . Câu 5: - Tìm tọa độ giao điểm của đồ thị với trục : Cho và tính ; – Tính . Rồi tính tại các giá trị vừa tìm được; – Viết PTTT:: . Bài toán 2: Viết phương trình tiếp tuyến của đồ thị hàm số : a) biết rằng tiếp tuyến song song với đuờng thẳng . b) biết rằng tiếp tuyến vuông góc với đường thẳng . Phương pháp: Tính Giải phương trình Tính Thay vào phương trình Chú ý: Tiếp tuyến song song với đường thẳng sẽ có hệ số góc Tiếp tuyến vuông góc với đường thẳng sẽ có hệ số góc Bài tập vận dụng: Bài 1: Viết phương trình tiếp tuyến của đồ thị hàm số biết rằng tiếp tuyến song song với đường thẳng Bài 2: Cho hàm số Tìm để tiếp tuyến của đồ thị hàm số tại điểm có hoành độ vuông góc với đường thẳng Bài 3: Cho . Viết phương trình tiếp tuyến với biết tiếp tuyến này vuông góc với . Bài 4: Cho a) Viết phương trình tiếp tuyến cới biết tiếp tuyến này song song với $y=6x-4$ b) Viết phương trình tiếp tuyến với biết tiếp tuyến này vuông góc với c) Viết phương trình tiếp tuyến với biết tiếp tuyến tạo với góc . Bài toán 3: Viết phương trình tiếp tuyến đi qua một điểm cho trước đến đồ thị. Phương pháp : Sử dụng điều kiện tiếp xúc Hai đường thẳng và tiếp xúc tai điểm hoành độ khi là ngiệm của hệ Ví dụ: Viết phương trình tiếp tuyến đi qua đến ? Hướng dẫn giải: Gọi là phương trình tiếp tuyến đi qua và có hệ số góc có dạng: Phương trình hoành độ giao điểm chung của và là : Giải hệ trên tìm được Vậy có hai tiếp tuyến với đi qua . Bài tập: 1. Viết phương trình tiếp tuyến đi qua đến 2. Có bao nhiêu tiếp tuyến đia qua đến đồ thị

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.