TAILIEUCHUNG - Phân tích tín hiệu P5

Transforms and Filters for Stochastic Processes In this chapter, we consider the optimal processing of random signals. We start with transforms that have optimal approximation properties, in the least-squares sense, for continuous and discrete-time signals, respectively. Then we discuss the relationships between discrete transforms, optimal linear estimators, and optimal linear filters. | Signal Analysis Wavelets Filter Banks Time-Frequency Transforms and Applications. Alfred Mertins Copyright 1999 John Wiley Sons Ltd Print ISBN 0-471-98626-7 Electronic ISBN 0-470-84183-4 Chapter 5 Transforms and Filters for Stochastic Processes In this chapter we consider the optimal processing of random signals. We start with transforms that have optimal approximation properties in the least-squares sense for continuous and discrete-time signals respectively. Then we discuss the relationships between discrete transforms optimal linear estimators and optimal linear filters. The Continuous-Time Karhunen-Lo eve Transform Among all linear transforms the Karhunen-Lo eve transform KLT is the one which best approximates a stochastic process in the least squares sense. Furthermore the KLT is a signal expansion with uncorrelated coefficients. These properties make it interesting for many signal processing applications such as coding and pattern recognition. The transform can be formulated for continuous-time and discrete-time processes. In this section we sketch the continuous-time case 81 149 .The discrete-time case will be discussed in the next section in greater detail. Consider a real-valued continuous-time random process x t a t b. 101 102 Chapter 5. Transforms and Filters for Stochastic Processes We may not assume that every sample function of the random process lies in L-iÇa b and can be represented exactly via a series expansion. Therefore a weaker condition is formulated which states that we are looking for a series expansion that represents the stochastic process in the mean 1 N x t yj t 5-1 The unknown orthonormal basis t i 1 2 . has to be derived from the properties of the stochastic process. For this we require that the coefficients Xi i x t ipi f dt J a of the series expansion are uncorrelated. This can be expressed as E xiXj E x j 5-3 The kernel of the integral representation in is the autocorrelation function rxx t u E x t x u . We see

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.