TAILIEUCHUNG - Bài giảng Toán cao cấp 1: Chương 3 - Nguyễn Văn Tiến

Bài giảng "Toán cao cấp 1 - Chương 3: Hàm nhiều biến" cung cấp cho người học các kiến thức: Khái niệm hàm hai biến, tập xác định của hàm hai biến, đạo hàm riêng, vi phân cấp hai, khái niệm cực trị, . | Bài giảng Toán cao cấp 1 Chương 3 - Nguyễn Văn Tiến 03 04 2017 CHƯƠNG 3 Khái niệm hàm hai biến Định nghĩa Cho không gian R2 x y x y R va D R2 HÀM NHIỀU BIẾN Ánh xạ f D R x y z f x y Được gọi là hàm hai biến xác định trên tập hợp D Mỗi cặp x y tương ứng với một số thực z x y là các biến độc lập z là biến phụ thuộc Bài giảng Toán Cao cấp 1 Nguyễn Văn Tiến Bài giảng Toán Cao cấp 1 Nguyễn Văn Tiến Khái niệm hàm ba biến Tập xác định hàm hai biến Định nghĩa Cho không gian Tập xác định của hàm số là tập hợp tất cả các cặp x y sao cho giá trị biểu thức f x y là số R 3 x y z x y z R va D R 3 thực. Ánh xạ Ví dụ Tìm tập xác định của các hàm số sau f D R x y z u f x y z a f x y y x2 Được gọi là hàm ba biến xác định trên tập hợp D b f x y ln 2x y 1 Mỗi cặp x y z tương ứng với một số thực u x y z là các biến độc lập u là biến phụ thuộc Bài giảng Toán Cao cấp 1 Nguyễn Văn Tiến Bài giảng Toán Cao cấp 1 Nguyễn Văn Tiến Tập xác định hàm ba biến Đạo hàm riêng Tập xác định của hàm số là tập hợp tất cả các Cho hàm hai biến z f x y xác định trên tập D. cặp x y z sao cho giá trị biểu thức f x y z là số Xem y như hằng số ta được hàm một biến theo thực. x. Lấy đạo hàm của hàm số này ta được đạo hàm riêng theo biến x. Ký hiệu z z x hay x Tương tự ta được đạo hàm riêng theo biến y Bài giảng Toán Cao cấp 1 Nguyễn Văn Tiến Bài giảng Toán Cao cấp 1 Nguyễn Văn Tiến 1 03 04 2017 Đạo hàm riêng Ví dụ Cho hàm hai biến z f x y xác định trên tập D. Cho hàm số Các đạo hàm riêng của z theo x y z x 3 3xy 2 y 4 z f x 0 y 0 f x y 0 f x 0 y 0 z x lim x x x x0 x x0 Đạo hàm riêng theo x xem y là hằng số z f x 0 y 0 f x 0 y f x 0 y 0 z y lim y y y y0 y y0 z x 3x 2 3y 2 Lấy đạo hàm riêng theo từng biến là đạo hàm của hàm một biến khi xem các biến còn lại như Đạo hàm riêng theo y xem x là hằng số hằng số. z y 6xy 4y 3 Bài giảng Toán Cao cấp 1 Nguyễn Văn Tiến Bài giảng Toán Cao cấp 1 Nguyễn Văn Tiến Vi phân hàm nhiều biến Ví dụ Cho hàm hai biến z f x y có các đạo hàm riêng Hàm số z x z y z x3 y 2 xy Khi đó biểu

TÀI LIỆU MỚI ĐĂNG
41    188    5    23-12-2024
28    158    1    23-12-2024
65    137    1    23-12-2024
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.