TAILIEUCHUNG - Rút gọn biểu thức đại số và các bài toán liên quan

Tham khảo và luyện tập với các bài toán trong tài liệu Rút gọn biểu thức đại số và các bài toán liên quan sẽ giúp các em học sinh hệ thống lại các kiến thức đã học, nâng cao khả năng tư duy giải toán nhanh và chính xác để chuẩn bị cho các kì thi sắp diễn ra. | Rút gọn biểu thức đại số và các bài toán liên quan RÚT GỌN BIỂU THỨC ĐẠI SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN A-LÝ THUYẾT 1. Kiến thức 6, 7, 8 quan trọng cần nhớ A a. Tính chất về phân số ( phân thức): ( M 0, B 0) B b. Những hằng đẳng thức đáng nhớ (A + B)2 = A2 + 2AB + B2 (A - B)2 = A2 - 2AB + B2 A2 - B2 = (A - B)(A + B) (A + B)3 = A3 + 3A2B + 3AB2 + B3 A - B)3 = A3 - 3A2B + 3AB2 - B3 A3 + B3 = (A + B)(A2 - AB + B2) A3 - B3 = (A - B)(A2 + AB + B2) 2. Các kiến thức về căn bậc hai Nếu a ≥ 0, x ≥ 0, a = x x2 = a Để A có nghĩa A 0 A2 A AB A. B ( với A 0; B 0) A A ( với A 0; B 0) B B A2 B A B ( với B 0) Tài liệu tự hoc- luyện thi vào 10 Page 1 A B A2 B ( với A 0; B 0) A B A2 B ( với A 0; B 0) A AB ( với AB 0; B 0) B B A A B ( với B 0) B B C C ( A B) ( với A 0; A B2 ) A B A B2 C C( A B ) ( với A 0; B 0 và A B) A B A B 3. CÁC DẠNG BÀI TẬP VỀ RÚT GỌN BIỂU THỨC ĐẠI SỐ VÀ CÁC BÀI TOÁN CÓ LIÊN QUAN Xét biểu thức A với biến số x Dạng 1. Rút gọn biểu thức - Ngoài việc rèn kỹ năng thực hiện các phép tính trong bài toán rút gọn. Học sinh hay quên hoặc thiếu điều kiện xác định của biến x ( ĐKXĐ gồm điều kiện để các căn thức bậc hai có nghĩa, các mẫu thức khác 0 và biểu thức chia (nếu có) khác 0) Dạng 2. Tính giá trị của biểu thức A khi x = m ( với m là số hoặc biểu thức chứa x) - Nếu m là biểu thức chứa căn x m ( bằng số), trước tiên phải rút gọn; nếu m là biểu thức có dạng căn trong căn thường đưa về hằng đẳng thức để rút gọn; nếu m là biểu thức ta phải đi giải phương trình tìm x. - Trước khi tính giá trị của biểu thức A, học sinh thường quên xét xem m có thỏa mãn ĐKXĐ hay không rồi mới được thay vào biểu thức dã rút gọn để tính. Tài liệu tự hoc- luyện thi vào 10 Page 2 x Ví dụ minh họa : Cho A , điều kiện x 0, x 1. x 1 a) Tính giá trị của biểu .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.